Online NOAA Custom Chart lets boaters create their own charts

A prototype version of a powerful new online tool, NOAA Custom Chart, is now available for boaters and other nautical chart users. The application enables users to define the scale and paper size of custom-made nautical charts centered on a position of their choosing. Once the functionality of this prototype is fully developed, NOAA Custom Chart will be an easy way for boaters to create a paper or digital back-up for the electronic chart system or other GPS-enabled chart display that they are using on board.

NOAA Custom Chart creates a geospatially referenced PDF (GeoPDF) from the NOAA electronic navigational chart (NOAA ENC®) database. In the final operational version of the application, chart notes and other margin notes will be placed at the bottom, below the chart neatline, similar to USGS topographic (US Topo) maps. The user may download, view, and print the output.

NOAA Custom Chart makes it easy for users to create a personalized chart.
NOAA Custom Chart makes it easy for users to create a personalized chart.

There are several options for customizing the appearance of the chart data. The prototype creates charts with either the “traditional” or “simplified” symbology of the Electronic Chart Display and Information Systems (ECDIS) used by professional mariners. Future versions of NOAA Custom Chart will add a full paper chart symbology option.

U.S.CustomChart_Interface
Simple interface lets users choose a scale, paper size, and the center of their own chart.

If you are interested in customizing your own nautical charts, visit NOAA Custom Chart. Then tell us your ideas for improving it through NOAA’s Nautical Inquiry & Comment System. 

 

NOAA mobile integrated survey team prepares for hurricane season

NOAA’s Office of Coast Survey is the federal leader in emergency hydrographic response. Consecutive strong storms during the 2017 hurricane season made response efforts challenging, and emphasized the importance of having a well-trained and versatile staff. Coast Survey’s regional navigation managers, navigation response teams (NRTs), and mobile integrated survey team (MIST) worked with partners before and after the storms to quickly and safely reopen ports and waterways.

The MIST equipment is a mobile, quick-install side scan and single beam sonar kit that can be quickly set up on a vessel of opportunity. Recently, Coast Survey sent the MIST team to Astoria, Oregon to conduct a hydrographic survey of the Mott Basin area, which the U.S. Coast Guard (USCG) requested to confirm charted depth and obstruction data.

The MIST group used this as an opportunity to give NRTs experience with setup, usage, and tear down of MIST equipment, as well as to perform a system test prior to the upcoming hurricane season.

Data collection in the Mott Basin aboard the USCG Trailerable Aids to Navigation Boat (TANB) vessel
Data collection in the Mott Basin aboard the USCG Trailerable Aids to Navigation Boat (TANB) vessel

The team installed and integrated the MIST equipment on a USCG Trailerable Aids to Navigation Boat (TANB) vessel. TANB vessels are normally used for navigation aid maintenance, but can serve as a vessel of opportunity for hydrographic surveys using MIST equipment. During the 2017 hurricane season, NOAA used USCG vessels of opportunity in Florida and Puerto Rico for rapid hydrographic survey response.

Setting up the MIST equipment on a USCG TANB vessel
Setting up the MIST equipment on a USCG TANB vessel

The deployment to Mott Basin in not only provided USCG with hydrographic data to meet their operational mission, but also allowed NOAA to exercise equipment that will be critical to any upcoming storm or emergency response.

The MIST and USCG survey crew. Tim Wilkinson (NRT3, far left),Erin Diurba (NRT4, second from left), Alex Ligon (NRT1, second from right) and Mike Annis (HQ, far right) represented Coast Survey.
The MIST and USCG survey crew. Tim Wilkinson (NRT3, far left), Erin Diurba (NRT4, second from left), Alex Ligon (NRT1, second from right) and Mike Annis (HQ, far right) represented Coast Survey.

Coast Survey’s NRTs conduct hydrographic surveys to update NOAA’s suite of nautical charts. The teams are strategically located around the country and remain on call to respond to emergencies speeding the resumption of shipping after storms, and protecting life and property from underwater dangers to navigation.

NOAA navigation response team investigates hazardous shoal off Rockaway Point, NY

Recently, NOAA navigation response team 5 (NRT5), responded to a survey request from U.S. Coast Guard (USCG) Sector New York following several groundings near Rockaway Point in Queens, New York. Waves and currents often influence the size and shape of nearshore sandbars, and the USCG was concerned that a sandbar may have expanded beyond the area depicted on the nautical chart. Lt. j.g. Dylan Kosten, Eli Smith, and Michael Bloom traveled from New London, Connecticut, to Jersey City, New Jersey, to launch their vessel and start the survey of the area.

NRT5’s survey area around the large sandbar off Rockaway Point.
NRT5’s survey area around the large sandbar off Rockaway Point.

The location of the shoal and characteristics of the sandbar created challenging conditions for the survey team. In addition, the crew was asked to survey at a tighter contour (6-foot) than the standard 4-meter (13.1-foot) contour so that they could more clearly define the boundaries of the shoal. To fulfill this requirement, the crew of NRT5 took strong precautions to mitigate risks associated with surveying in shallow water with breaking waves and strong currents, and closely monitored conditions for changes throughout the day.

The shoal, located off Rockaway Point at the northern end of Raritan Bay, is exposed to both open ocean swells and strong tidal currents (left image, from surveyed area). The interaction of tides, currents, and waves surrounding the shoal produce rolling breakers (right photo). Wave energy stirs up the sediment and suspends large volumes of sand in the water column. Wave energy fluctuates as the tide ebbs and flows, and sand is washed away and deposited elsewhere – in this case, it formed a mostly permanent sand bar off of Rockaway Point.
The shoal, located off Rockaway Point at the northern end of Raritan Bay, is exposed to both open ocean swells and strong tidal currents (left image, from surveyed area). The interaction of tides, currents, and waves surrounding the shoal produce rolling breakers (right photo). Wave energy stirs up the sediment and suspends large volumes of sand in the water column. Wave energy fluctuates as the tide ebbs and flows, and sand is washed away and deposited elsewhere – in this case, it formed a mostly permanent sandbar off of Rockaway Point.

Conditions changed quickly. The northeast experienced unseasonably warm temperatures, and a thick blanket of fog engulfed New York Harbor as the warm air met the cold water of the ocean, harbors, and bays. With weather conditions thought to be better outside of the harbor and to likely improve later in the morning, the team cautiously transited to the project area and found conditions were indeed much more favorable.

Lt. j.g. Dylan Kosten keeping a steady watch through the thick fog.
Lt. j.g. Dylan Kosten keeping a steady watch through the thick fog.

Despite the challenges, NRT5 successfully completed the survey of the area by the end of the week. While the 6-foot contour was not reached in all areas due to breaking waves, the data was interpolated to that scale using lines of data run across the shoal in between wave sets. NRT5 has processed and analyzed the acquired data and Coast Survey will use it to create products to improve the resolution of the charted shoal and prevent future incidents.

During NRT5’s responses in areas surrounding the New York Harbor, the USCG Aids to Navigation Team (ANT) in Bayonne, New Jersey, offered the team a spot to dock their vessel at the end of the day. This sheltered station provided safety from poor weather conditions and allowed the team to quickly transit to project areas. Here, NOAA survey vessel S3007 is moored alongside at the USCG station.
During NRT5’s responses in areas surrounding the New York Harbor, the USCG Aids to Navigation Team (ANT) in Bayonne, New Jersey, offered the team a spot to dock their vessel at the end of the day. This sheltered station provided safety from poor weather conditions and allowed the team to quickly transit to project areas. Here, NOAA survey vessel S3007 is moored alongside at the USCG station.
Survey data coverage acquired around the sandbar. The black line marks the 12-foot depth contour and the red dashed line marks the interpolated 6-foot depth contour. The wreck symbols indicate where vessel groundings occurred in the weeks prior to this survey.
Survey data coverage acquired around the sandbar. The black line marks the 12-foot depth contour and the red dashed line marks the interpolated 6-foot depth contour. The wreck symbols indicate where vessel groundings occurred in the weeks prior to this survey.

Coast Survey’s NRTs conduct hydrographic surveys to update NOAA’s suite of nautical charts. The teams are strategically located around the country and remain on call to respond to emergencies speeding the resumption of shipping after storms, and protecting life and property from underwater dangers to navigation. NRT5 team members contributed the content of this story.

NOAA navigation response team locates sunken vessel before nor’easter strikes

On March 12, 2018, NOAA Coast Survey’s navigation response team 5 (NRT5) located the T/V Captain Mackintire, an 80-foot towing vessel that sank off the coast of Kennebunkport, Maine. The U.S. Coast Guard requested assistance finding the vessel, citing concerns of environmental hazards due to an unknown amount of fuel remaining onboard.

While being transferred from Maine to New York by the smaller tug, Helen Louise, Mackintire‘s seaworthiness became questionable. The crew aboard the Helen Louise contacted USCG Sector Northern New England for support. The USCGC Reef Shark patrol boat assumed towing responsibility of Mackintire and around 2 a.m. on February 22, the Reef Shark cut the towing line as Mackintire sank.

tug-02
T/V Captain Mackintire in front, with Helen Louise in the background towing. Credit: USCG Sector Northern New England

As soon as NRT5 received the USCG request to locate the Mackintire, the team—Lt. j.g. Dylan Kosten, Michael Bloom, and Eli Smith—departed from their homeport of New London, Connecticut, for Kennebunkport. 

Surveying in a small vessel in Maine during March is highly restricted by cycles of low pressure, known as nor’easters, which in some cases create 100 mile per hour winds, coastal flooding, and blizzard conditions. Recognizing a narrow window of opportunity before the next storm hit, NRT5 amended their existing plan—to begin survey post nor’easter—and instead launched immediately upon arrival. Accompanied by Lara Herrmann, USCG, the team headed offshore to begin their search.

Multibeam Imagery of the vessel
Multibeam imagery of the T/V Captain Mackintire.

Within 15 minutes of initiating survey operations at the location provided by the USCG, the team found the tug using multibeam sonar imagery. Upon inspection, they determined the vessel is laying on its starboard side in 45 meters of water, 300 meters to the southwest of its last known position. With survey operations completed, the team opted to remain in Kennebunkport to weather the storm before returning to New London.

 

NOAA surveys for recreational boat traffic safety in Tampa Bay

NOAA’s navigation response team 2 (NRT2), homeported in Fernandina Beach, Florida, conducted a survey around the Sunshine Skyway Bridge, which spans Tampa Bay. The U.S. Coast Guard (USCG) and additional members of the Tampa Bay Harbor Safety Committee requested the work and expressed interest in establishing alternate routes for recreational boating traffic. Alternative routes will alleviate increasing congestion where the main ship channel passes beneath the bridge. This area is naturally restrictive to navigation and, as a result, there have been multiple accidents and near accidents here in the past.

Multibeam echo sounder coverage. Credit: NOAA
Multibeam echo sounder coverage. Credit: NOAA

Lt. j.g. Patrick Debroisse from NOAA Research Vessel Bay Hydro II installed a topographic lidar system on NRT2, which marked the first time a lidar system was employed from an NRT boat. The lidar system enabled 3D data to be collected for those portions of the bridge that are above water line. NRT2 collected lidar data for associated bridge protective structures and two fixed light range towers in addition to the bridge and bridge supports.   

The accurate positional and dimensional information gleaned from this data will be used to compliment extensive hydrographic sonar data collected beneath the surface. Together, the complete data set will enable full consideration of area features, both above and below the water line, in determining the placement of alternative routes.

TampaBay_SunshineSkywayBridge

The center spans of the Sunshine Skyway Bridge (left) were successfully captured from lidar data (right). Photo credits: NOAA
The center spans of the Sunshine Skyway Bridge (above) were successfully captured from lidar data (below). Credits: NOAA

A USCG approval decision is anticipated in the spring. If approved, the chief of the cartographic team will work to have the alternate routes added to all affected NOAA charts.

The NRT2 team consists of James Kirkpatrick (team lead), Lucas Blass, and Howie Meyers. NOAA’s NRTs operate trailer-able survey launches to provide time-sensitive information during emergency response and maritime incidents such as vessel groundings, sinkings, or cargo loss. The launches are equipped with multibeam and side scan sonar, which can help identify navigation hazards and mitigate risk to life and property.

The largest scale raster navigational charts of this area, charts 11415 and 11416, are available online.

NOAA Office of Coast Survey wraps up a busy 2017 hurricane season

The 2017 Atlantic hurricane season was powerful, with the strongest storms occurring consecutively from late August to early October. The sequential magnitude of four hurricanes in particular—Harvey, Irma, Maria, and Nate—made response efforts challenging for NOAA’s Office of Coast Survey. Coast Survey summarized this season’s response efforts along with the efforts of NOAA Ship Thomas Jefferson (operated by NOAA’s Office of Marine and Aviation Operations) in the following story map.

hurricane-season-storymap

NOAA Ship Fairweather uses new technology to improve survey efficiency

By ENS Peter Siegenthaler

Following the scheduled winter repair period, Fairweather is kicking off the 2017 field season in Tlevak Strait; the waterway between Dall Island and Prince of Wales Island in Southeast Alaska. This area was last surveyed between 1900 and 1939, and the lead-lines used at the time to determine depths were susceptible to omission of rocks and other features in an area. Using the latest innovations in hydrographic technology, Fairweather will be resurveying these areas with complete coverage multibeam echo sounder bathymetry. This allows Fairweather to identify any rocks or shoal features missed in prior surveys, increasing the safety for local communities, whose economies and livelihoods are dependent on maritime transportation of goods.

One of the new developments Fairweather’s survey department in particular is excited about is a new software program affectionately named “Charlene.” Charlene was developed by PS Eric Younkin at Coast Survey’s Hydrographic Systems and Technologies Branch (HSTB) to automate the night processing workflow. This simplifies hours spent each night converting and correcting raw sonar data into an automated script which takes in raw data at one end and generates products at the other. Initial results are promising, and the ship is looking forward to fully integrating Charlene into the processing workflow.

Another new development for the 2017 field season is new multibeam sonars for the ship’s survey launches, which were installed during the winter repair period. The preliminary data acquired by these sonars has shown vast improvement over their predecessors’ data, which will go a long way towards reducing data processing timelines. The new sonars do this by automating most of the acquisition parameters in real-time, far faster and more effectively than could be achieved manually. They also take advantage of a multitude of hardware and software advances that have taken place over the past several years, resulting in systems that are quieter, smaller, and easier to operate.

Fairweather is continuing to use and develop the launch-mounted lidar systems (lasers) for the acquisition of shoreline data. This was another HSTB-developed process that was validated during the 2016 field season. This year, Fairweather is using those lessons learned in order to further improve our acquisition workflow. These systems create accurate real-time point clouds of features above the waterline and have revolutionized the way hazards to navigation are documented. Before the use of lasers, shoreline verification frequently required physically touching rocks and obstructions above the water surface for accurate measurement and placement. This process involved increased risk, took more time, and produced less accurate data. The new laser workflow addresses all these limitations. By scanning the shoreline at a distance with calibrated equipment, efficiency, accuracy, and safety are all greatly improved.

Overall, Fairweather is enthusiastic about being back at work in Alaska. With her new software, sonar systems, and dedicated crew, the stage is set for and productive field season!

Area surveyed by Fairweather May 30- June 10, 2017.
Area surveyed by Fairweather May 30- June 10, 2017.