NOAA navigation response team investigates hazardous shoal off Rockaway Point, NY

Recently, NOAA navigation response team 5 (NRT5), responded to a survey request from U.S. Coast Guard (USCG) Sector New York following several groundings near Rockaway Point in Queens, New York. Waves and currents often influence the size and shape of nearshore sandbars, and the USCG was concerned that a sandbar may have expanded beyond the area depicted on the nautical chart. Lt. j.g. Dylan Kosten, Eli Smith, and Michael Bloom traveled from New London, Connecticut, to Jersey City, New Jersey, to launch their vessel and start the survey of the area.

NRT5’s survey area around the large sandbar off Rockaway Point.
NRT5’s survey area around the large sandbar off Rockaway Point.

The location of the shoal and characteristics of the sandbar created challenging conditions for the survey team. In addition, the crew was asked to survey at a tighter contour (6-foot) than the standard 4-meter (13.1-foot) contour so that they could more clearly define the boundaries of the shoal. To fulfill this requirement, the crew of NRT5 took strong precautions to mitigate risks associated with surveying in shallow water with breaking waves and strong currents, and closely monitored conditions for changes throughout the day.

The shoal, located off Rockaway Point at the northern end of Raritan Bay, is exposed to both open ocean swells and strong tidal currents (left image, from surveyed area). The interaction of tides, currents, and waves surrounding the shoal produce rolling breakers (right photo). Wave energy stirs up the sediment and suspends large volumes of sand in the water column. Wave energy fluctuates as the tide ebbs and flows, and sand is washed away and deposited elsewhere – in this case, it formed a mostly permanent sand bar off of Rockaway Point.
The shoal, located off Rockaway Point at the northern end of Raritan Bay, is exposed to both open ocean swells and strong tidal currents (left image, from surveyed area). The interaction of tides, currents, and waves surrounding the shoal produce rolling breakers (right photo). Wave energy stirs up the sediment and suspends large volumes of sand in the water column. Wave energy fluctuates as the tide ebbs and flows, and sand is washed away and deposited elsewhere – in this case, it formed a mostly permanent sandbar off of Rockaway Point.

Conditions changed quickly. The northeast experienced unseasonably warm temperatures, and a thick blanket of fog engulfed New York Harbor as the warm air met the cold water of the ocean, harbors, and bays. With weather conditions thought to be better outside of the harbor and to likely improve later in the morning, the team cautiously transited to the project area and found conditions were indeed much more favorable.

Lt. j.g. Dylan Kosten keeping a steady watch through the thick fog.
Lt. j.g. Dylan Kosten keeping a steady watch through the thick fog.

Despite the challenges, NRT5 successfully completed the survey of the area by the end of the week. While the 6-foot contour was not reached in all areas due to breaking waves, the data was interpolated to that scale using lines of data run across the shoal in between wave sets. NRT5 has processed and analyzed the acquired data and Coast Survey will use it to create products to improve the resolution of the charted shoal and prevent future incidents.

During NRT5’s responses in areas surrounding the New York Harbor, the USCG Aids to Navigation Team (ANT) in Bayonne, New Jersey, offered the team a spot to dock their vessel at the end of the day. This sheltered station provided safety from poor weather conditions and allowed the team to quickly transit to project areas. Here, NOAA survey vessel S3007 is moored alongside at the USCG station.
During NRT5’s responses in areas surrounding the New York Harbor, the USCG Aids to Navigation Team (ANT) in Bayonne, New Jersey, offered the team a spot to dock their vessel at the end of the day. This sheltered station provided safety from poor weather conditions and allowed the team to quickly transit to project areas. Here, NOAA survey vessel S3007 is moored alongside at the USCG station.
Survey data coverage acquired around the sandbar. The black line marks the 12-foot depth contour and the red dashed line marks the interpolated 6-foot depth contour. The wreck symbols indicate where vessel groundings occurred in the weeks prior to this survey.
Survey data coverage acquired around the sandbar. The black line marks the 12-foot depth contour and the red dashed line marks the interpolated 6-foot depth contour. The wreck symbols indicate where vessel groundings occurred in the weeks prior to this survey.

Coast Survey’s NRTs conduct hydrographic surveys to update NOAA’s suite of nautical charts. The teams are strategically located around the country and remain on call to respond to emergencies speeding the resumption of shipping after storms, and protecting life and property from underwater dangers to navigation. NRT5 team members contributed the content of this story.

NOAA quickly updates nautical chart, allowing large ships to dock with confidence in Port Everglades

NOAA’s Office of Coast Survey quickly updated NOAA electronic navigational charts (NOAA ENC®) to accurately reflect the 225 foot expansion of a slip in Port Everglades, Florida. Now at a total length of 1,125 feet, the elongated slip allows larger ships to dock with confidence. The Port Everglades Pilots – maritime pilots who maneuver ships through crowded harbors and confined waters – requested the chart update. With ENCs that accurately reflect the slip expansion in their hands, pilots can easily communicate to vessel captains that it is safe to dock their vessels in the slip.

Port Everglades is one of the top three cruise ports in the world, and is among the most active cargo ports in the United States. Every slip is kept in high use, and Coast Survey used a new data process that allowed the most critical and valuable information to be applied quickly and made available to the end user.

To update nautical charts, Coast Survey historically applied data that covered the entire shoreline. This process was cumbersome and time-consuming as updates were based on a print (not digital) cycle. However, in this case, Coast Survey utilized discrete shoreline snippets of the target areas, provided by National Geodetic Survey’s Remote Sensing Division (RSD), to ensure a quick turnaround of the corrected charts.

The 190-meter bulk carrier "Port Shanghai" using the recently extended portion of Slip 2 before the ENC was updated (left image), making it appear as though the vessel bow has grounded. After the ENC update, the change in the slip length was reflected in ENC cell US5FL32 and US4FL31 (right image). Credit: NOAA
The 190-meter bulk carrier “Port Shanghai” using the recently extended portion of Slip 2 before the ENC was updated (left image), making it appear as though the vessel bow has grounded. After the ENC update, the change in the slip length was reflected in ENC cell US5FL32 and US4FL31 (right image). Credit: NOAA

Harbor bathymetric survey data from the U.S. Army Corps of Engineers and shoreline revision data from a georeferenced WorldView-2 image, compiled by the RSD, were used to update the harbor (1:10,000) and approach (1:80,000) ENC charts. This ENC-first, digital structure as outlined in the National Charting Plan helps Coast Survey quickly apply updates to charts, increase efficiency, and streamline data workflows.

NOAA Ship Rainier surveys the waters around Kodiak Island

kodiak-ais
Concentration of automatic identification system (AIS) traffic around Kodiak Island. Green is a low concentration, yellow is medium concentration, red is high concentration. Notice the approaches to Port of Kodiak show high traffic.
by ENS Michelle Levano

Kodiak Island is the 2nd largest island in the United States; it is part of the Kodiak Island Archipelago, a group of islands roughly the size of Connecticut. Due to the island’s location in the Gulf of Alaska and North Pacific Ocean, Kodiak is ranked as third in commercial fishing ports in the U.S. in terms of value of seafood landed. In 2015, the Port of Kodiak was responsible for 514 million pounds of fish and $138 million of product. More than one-third of the jobs in Kodiak are related to the fishing industry.

The Port of Kodiak is home to more than 700 commercial fishing vessels, and has more than 650 boat slips and three commercial piers that can dock vessels up to 1,000 feet. In addition to fishing, Kodiak is the hub of the Gulf of Alaska container logistics system, serving the southwest Alaskan communities with consumer goods and outbound access to the world’s fish markets.

In order to access all the Port of Kodiak has to offer, vessels must first travel through Chiniak Bay, which was last surveyed as far back as 1933 via wire drag (see details in the Descriptive Report for the Wire Drag survey of Women’s Bay and St. Paul Harbor).

Today, we are going over the same areas and surveying them utilizing multibeam echo sounders to collect bathymetric soundings that measure the depth of the seafloor.

This year, Rainier is surveying the approaches to Chiniak Bay, covering the following areas: South of Spruce Island, Long Island, Middle Bay, Kalsin Bay, Isthmus Bay, Cape Chiniak, and offshore of Cape Chiniak.

Since arriving on project, Rainier has been busy surveying these areas, confirming what has already been charted, updating with more accurate depths, and finding some new features for the charts along the way!  So far Rainier has patch-tested her launches to ensure survey accuracy, started work on Long Island and Kalsin Bay surveys, and established a global navigation satellite system (GNSS) base station to gain a higher positioning accuracy.

Rainier will continue to survey this area of Kodiak until mid-June. Check back on the Coast Survey blog for more status updates. Interested in visiting the ship? Rainier‘s crew will be offering tours on May 27, from 1 p.m. to 4 p.m. and May 28, from 10 a.m. to 2 p.m., at the city pier in downtown Kodiak.

Please contact NOAA Ship Rainier’s public relations officer at michelle.levano@noaa.gov for more information.

kodiak
Rainier‘s bathymetric survey coverage since March 29, 2017. The multicolored areas show where Rainer surveyed using multibeam bathymetry. The blue dashed areas show where Rainier intends to survey this year.

Geographic names disappear from charts, but not from history — #Data4Coasts

by Meredith Westington, Coast Survey geographer

Good, informed decisions are often based on analyses of historic and present conditions. Researchers, decision-makers, and amateur history buffs find detailed documentation of past conditions in the thousands of Coast Survey charts, dating back to the mid-1800s, in our Historical Map and Chart Collection.

Just like present day nautical charts, historic charts contain a wealth of information about geographic features — including their names, shape, and condition. Geographic names are important locational references for today’s emergency responders, but current and historic names also convey important aspects of local people and culture, which may persist through time.

As Coast Survey’s nautical cartographers routinely apply new topographic and hydrographic data to improve decisions at-sea, a question arises about names when a geographic feature, such as an island, bay, or bayou, has changed: does the associated place name disappear when the geographic feature is no longer there, or does the local population still use the historic name to convey a shared sense of place?

Coast Survey cartographers raised this exact question after applying new shoreline information to charts covering Louisiana. When cartographers applied new shoreline data to charts 11358 and 11364 in 2011, they found that named features were no longer there (see the images below for a comparison of today’s landforms vs. the historic landforms in 1965). In early 2013, another new shoreline survey similarly affected fourteen geographic names on chart 11361. They removed these “dangling names” to reduce chart clutter, but are there new names for the areas where the features used to be?

chart comparisons
On the left is the area south of Buras, Louisiana, on Mississippi River chart 11364, 2012 edition. On the right is the same area shown on Mississippi River chart 1271, 1965 edition.

Losing places (and their names) may mean losing important locational references. Some of these places have appeared on NOAA’s nautical charts of Louisiana since the late 1800s, so their removal raises concerns about a loss of cultural identity on the landscape. For example, Cyprien Bay was named for longtime resident Cyprien Buras. The names live on, of course, on the historic maps and charts in Coast Survey’s Historical Map and Chart Collection. Importantly, they are also retained in the lesser-known U.S. Board on Geographic Names’ federal repository of place names, the Geographic Names Information System. The system’s current and historical records make a great starting point for finding names that you can use to locate relevant historical nautical charts in the Historical Map and Chart Collection. The collection has an easy-to-use geographic place name search function. Just type in a name, and start to explore our nation’s geographic changes…

Search over 35,000 historical maps and charts.
Search over 35,000 historical maps and charts, just using a geographical name.