Archive for the ‘Hydrographic surveys’ Category

NOAA Ship Rainier surveys Uganik Bay   1 comment

By Ensign Michelle Levano

NOAA Ship Rainier recently arrived in Uganik Bay, off of northwest Kodiak Island, to complete hydrographic survey operations in Uganik Passage and Uganik Bay, including the Northeast Arm, North Arm, and South Arm. Rainier has spent 2013 through 2016 surveying areas around North Kodiak Island, including Kizhuyak Bay, Whale and Afognak Passes, Kupreanof Strait, and Viekoda and Terror Bays. The ship will remain in Uganik Bay until the end of October.

Rainier completed project areas H12916, H12919, and H12848 in the spring. They are now surveying H12693 south through H12849 and H12918.

Rainier completed project areas H12916, H12919, and H12848 in the spring. They are now surveying H12693 south through H12849 and H12918.

Rainier is using multibeam sonar technology to acquire high-resolution seafloor mapping data to provide modern chart updates that support Kodiak’s large fishing fleet and higher volumes of passenger vessel traffic. Some of the data appearing on NOAA’s charts in this area are from surveys conducted between 1900 and 1939. (See the source diagram in the bottom left corner of NOAA chart 16597.) However, this is not Rainier’s first visit to Uganik Bay. In the early 1970s, Rainier was in the same vicinity performing survey operations and installing survey stations at Broken Point, Uganik Bay, and Shelikhof Strait.

Rainier crew at Broken Point, Uganik Bay, in the 1970s

Rainier crew at Broken Point, Uganik Bay, in the 1970s


Commissioned in 1968, NOAA Ship Rainier has a 48-year history in NOAA’s fleet of research ships and aircraft. Homeported at NOAA’s Marine Operations Center-Pacific in Newport, Oregon, she is operated and managed by NOAA’s Office of Marine and Aviation Operations. The 231-foot Rainier is one of four hydrographic survey ships in the NOAA fleet that support the nautical charting mission of NOAA’s Office of Coast Survey to keep mariners safe and maritime commerce flowing. The ship, her four aluminum survey launches, and other small boats collect data that is used to update nautical charts and inform decisions on coastal science and management.

NOAA Ship Rainier at anchor, in Uganik. Photo by Ensign Dylan Kosten

NOAA Ship Rainier at anchor, in Uganik. Photo by Ensign Dylan Kosten

One of Rainier's four launches at work in Uganik Bay.

One of Rainier‘s four launches at work in Uganik Bay.

Each of Rainier’s small boat launches has modern sonar systems that gather data nearshore as well as offshore. Additionally, the ship itself has a sonar system mounted to her hull for offshore operations. This information can provide bottom seafloor habitat characterization for sustainable fisheries initiatives, and provide data for ocean tourism and recreational fishing.

If you happen to be in the area, and see a white hull with S-221 painted on her bow, please do not hesitate to contact the ship to acquire more information regarding the ship and her mission. Rainier monitors VHF channels 13 and 16. Or, email Rainier’s public affairs officer at

Posted September 20, 2016 by NOAA Office of Coast Survey in Hydrographic surveys, Rainier

Tagged with

Assisting tow industry along Chandeleur Sound Alternate Route   Leave a comment

The Inner Harbor Navigation Channel in New Orleans facilitates the transportation of tens of millions of tons of cargo each year. Since the channel was recently closed for repairs, a temporary Chandeleur Sound Alternate Route was established to ensure the flow of commerce between the western and eastern reaches of the Gulf Intracoastal Waterway. NOAA experts assisted with the alternate route development in various ways, collaborating with the U.S. Coast Guard, U.S. Army Corps of Engineers, and the maritime industry.

Navigation manager Tim Osborn represented NOAA on the Coast Guard’s weekly conference calls on the alternate route, asking for industry suggestions on how we could assist. Based on these collaborations, Coast Survey updated the nautical charts with the newly installed Aids to Navigation, while the National Weather Service began providing localized weather forecasts and warnings along the route. In addition, Coast Survey contracted David Evans and Associates (DEA) to survey the southern 33 miles of the total 66-mile proposed route. The survey required object detection survey coverage, with DEA submitting all observed soundings or obstructions shoaler than 12 feet as dangers to navigation. DEA found three dangers to navigation, and they were subsequently announced in the Local Notice to Mariners and applied to the applicable nautical charts.

NOAA survey Chandeleur Sound Alternate Route

Alternate Route DTONs

NOAA will continue to support the tow industry using the alternate route by adding new navigation data to the chart as we receive it, as well as by providing specialized weather reports along the route throughout the estimated three-month closure of the Inner Harbor Navigation lock in New Orleans.

NOAA Ship Fairweather begins multi-mission projects in Alaska   1 comment

In a unique deployment of resources, last week NOAA Ship Fairweather split its scientific team and vessels to tackle two distinct projects in Alaska. Coast Survey physical scientist Katrina Wyllie and Lt.j.g. Bart Buesseler report on the multi-mission projects.


On August 9, NOAA Ship Fairweather departed Dutch Harbor, Alaska, for a FISHPAC project, led by Dr. Bob McConnaughey from NOAA’s Alaska Fisheries Science Center. This project’s primary mission is to statistically associate acoustic backscatter returns with the abundances of fish and crabs that frequent the Bering Sea seafloor. The science team accomplishes this with acoustic data from multibeam, single beam, and side scan sonars. Understanding the value of acoustic backscatter as a habitat-defining character will help scientists understand where fish live and the importance of different habitats. The acoustic data will also be used to correct for differences in the performance of research bottom trawls on different seafloor types, so that stock assessments and fishery management can be improved. To make sure the scientists understand what the acoustic data are showing, each day the ship will stop and collect physical bottom samples of the seafloor to see, touch, and interpret their findings. Further increasing the effectiveness of this mission, all of the multibeam bathymetry data acquired will directly support NOAA’s Office of Coast Survey as the data will be used to update soundings on the nautical charts for the eastern Bering Sea where the ship will be operating.

NOAA Ship Fairweather will survey the red tracklines for the FISHPAC project this year. The green lines will be surveyed at a later date.

NOAA Ship Fairweather will survey the red tracklines for the FISHPAC project this year. The green lines will be surveyed at a later date.


FISHPAC mission equipment on deck of NOAA Ship Fairweather

With Fairweather actively conducting 24-hour ship survey operations in Bristol Bay, there wouldn’t be any chance to deploy her four survey launches for additional acquisition. Sensing an opportunity, the Office of Coast Survey, the command of the Fairweather, and Marine Operations Center-Pacific collaboratively came up with a multi-mission plan to maximize the capabilities of Fairweather during the FISHPAC project. Before departing Dutch Harbor, Fairweather deployed a shore team with the four survey launches to stay in Dutch Harbor and address some critical navigation needs identified by the port.

Two of the NOAA Ship Fairweather launches depart for a day of hydrographic surveying

Two of the NOAA Ship Fairweather launches depart for a day of hydrographic surveying.


Although its location is remote, the port of Dutch Harbor is a vibrant and bustling port serving full-size container ships. It is the country’s top fishing port in terms of landings for the past 18 years. Deep draft and ice-free year-round, Dutch Harbor provides a critical link in America’s transportation infrastructure. Trivia buffs may also know that Dutch Harbor is the only other American soil, in addition to Pearl Harbor, to be bombed during World War II. (For more on Alaska in World War II, see USC&GS Ship Hydrographer contributes to significant Allied victory.)

With the increase in commerce flowing into and out of the harbor, local maritime pilots asked Coast Survey navigation manager Lt. Timothy Smith for updated nautical charts to improve the safety of maritime traffic. This need was underscored in July 2015, when a polar ice class vessel ran aground in an area of the chart which hadn’t been surveyed since before World War II. Shortly after this grounding, Fairweather was able to alter their schedule to conduct a response survey in the area of the grounding (green area in project sheet layout, below). Additionally, Fairweather had previously surveyed small high priority areas in 2011 (orange areas).

Project area of the north coast of Unalaska Island hydrographic survey project being conducted by NOAA Ship Fairweather launches.

Project area of the north coast of Unalaska Island hydrographic survey project being conducted by NOAA Ship Fairweather launches.


This month’s collaborative project, performed in conjunction with FISHPAC, provided the perfect opportunity to address these navigational needs. With the survey launches remaining in Dutch Harbor, with a team of scientists, coxswains, and engineers to support them, Fairweather’s shore team will acquire complete coverage multibeam data in the entire project area, totaling approximately 38 square nautical miles, as outlined by the blue shapes in the project sheet layout.

The City of Unalaska has graciously facilitated this unique mission by providing pier space for all four launches for the project’s duration. The team itself has established a base of operations at the Grand Aleutian Hotel, where they have converted a conference room into a command center to process the day’s freshly collected data, while preparing the mission for the subsequent day.

The shore team has plenty of work to keep them busy until August 27, when Fairweather returns to Dutch Harbor after completing the more than 4,000 line-mile  FISHPAC mission and recovers the survey team and launches. Fairweather then transits back to Kodiak, Alaska, for a scheduled inport and well deserved break before hydrographic survey operations resume in the vicinity of Sitkalidak Strait.

Lt.j.g. Bart Buesseler review multibeam bathymetry data in the shore team base of operations room.

Lt.j.g. Bart Buesseler review multibeam bathymetry data in the shore team base of operations room.

Launch crews hold morning safety meeting at the pier.

Launch crews hold morning safety meeting at the pier.

The four launches tie up alongside at the Robert Storrs International Small Boat Harbor facility.

The four launches tie up alongside at the Robert Storrs International Small Boat Harbor facility.


Additional resource:Combining expertise makes for better nautical charts and better understanding of fish habitats in Alaska, Oct. 9, 2012

How NOAA updates nautical charts with high-tech tools   Leave a comment

From a NOAA National Ocean Service podcast…

Boaters rely on NOAA’s nautical charts for depth measurements so they don’t accidentally ground on sandbars or other underwater obstructions. See how NOAA updates nautical charts with high tech tools —including new experimental ocean “robots” that are small enough to survey the nation’s shallowest coastal areas.


Transcript available.

Olympic Coast survey provides data for multiple uses   1 comment

Coastal planners, fishery managers, and oceanographic researchers will soon reap important seafloor and water column data from the coast of Washington, when NOAA Ship Rainier undertakes a special project in the waters within and near the Olympic Coast National Marine Sanctuary in May.

Map of IOCM projects Olympic Coast NMS

The blue lines indicate NOAA Ship Rainier’s survey project areas. From north to south, the project encompasses Juan De Fuca Canyon (65 square nautical miles), Quinault Canyon (378 square nautical miles), and Willapa Canyon (189 square nautical miles). The teal dots in Quinault and Willapa canyons are the locations of deep underwater natural methane gas seeps being investigated in a University of Washington research project. The green shaded area is the extent of the Olympic Coast National Marine Sanctuary.

The project, which is being managed by NOAA’s Integrated Ocean and Coast Mapping program, grew from NOAA’s National Centers for Coastal Ocean Science seafloor mapping prioritization exercise among coastal stakeholders from federal and state (Oregon and Washington) agencies, tribes, and academia. The group determined that one of the biggest needs by most of the organizations was a better understanding of canyon depths, seafloor, and habitat.

A scientific team of experts from the College of Charleston, University of Washington, and Oregon State University will contribute to the NOAA-led multi-disciplinary survey project, gathering data for a host of research projects and ocean management activities. In general, the data will collect swath bathymetry, acoustic backscatter, and water column data to:

  • inform regulatory decisions on coastal development;
  • provide benthic habitat mapping and seafloor characterization for sustainable fisheries initiatives, and to help assess fishery stocks and critical spawning aggregation locations;
  • better understand and manage shelf and canyon resources;
  • aid in resolving multiple-use conflicts;
  • advance research in determining chemical and biological contamination levels; and
  • provide a data repository for the development of ocean tourism and recreational fishing.

Some specific research projects are also planned.

  • A University of Washington scientist will analyze the water column plumes over natural methane gas seeps in the planned survey areas. The university is a leader in the study of methane hydrates.
  • Because Rainier heads to Alaska after the survey in the sanctuary, the ship will also conduct an exploratory survey to obtain seafloor imagery and data over a newly discovered mud volcano in the upper continental slope offshore of Dixon Entrance, just off the Inside Passage near Ketchikan, Alaska. California State researchers will use the data from this 40 square nautical mile survey to analyze the seafloor shape, assess the area for effects on potential tsunamis, and identify unique biological communities.

As part of her regular mission, Rainier will acquire depth measurements and other hydrographic data throughout the entire project to update NOAA nautical charts 18480 and 18500 off the coast of Washington, and chart 17400 in Alaskan waters. The corresponding electronic navigational charts (NOAA ENC®) are US3WA03M, US3AK40M, and US3AK40M.

Chris Stubbs, from the College of Charleston, will serve as the project’s chief scientist. Cmdr. Edward J. Van Den Ameele is Rainier’s commanding officer.

NOAA ship Rainier, a 48-year-old survey vessel, is part of the NOAA fleet of ships operated, managed and maintained by NOAA’s Office of Marine and Aviation Operations, which includes commissioned officers of the NOAA Corps, one of the seven uniformed services of the United States, and civilian wage mariners.

Four Gulf of Mexico basins named for officers who led EEZ bathymetric mapping   1 comment

The U.S. Board on Geographic Names recently named four previously unknown basins in the United States Exclusive Economic Zone (EEZ) in the Gulf of Mexico, honoring retired NOAA officers who mapped the area in the late 1980s and early 1990s. The names — Armstrong Basin, Floyd Basin, Matsushige Basin and Theberge Basin — were proposed by Texas A&M University, based on their new compilation of bathymetry drawn largely from the NOAA multibeam mapping project conducted by now-decommissioned NOAA ships Whiting and Mt. Mitchell.

Newly named Armstrong Basin

A basin in the Gulf of Mexico was named after retired NOAA Captain Andrew Armstrong.


Retired NOAA Capt. Richard P. Floyd was the commanding officer of NOAA Ship Whiting from February 1990 to March 1992; he was followed by retired Capt. Andrew A. Armstrong III, who was CO from February 1992 to January 1994. Retired NOAA Capt. Roy K. Matsushige was commanding officer of NOAA Ship Mt. Mitchell from December 1988 to January 1991, followed by retired Capt. Albert E. Theberge, who served as CO from January to November 1991. The officers led the bathymetric mapping operations under the direction of NOAA’s Office of Charting and Geodetic Services, a predecessor of today’s Office of Coast Survey.

Cartographers rely on the Board of Geographic Names, for good reason!

Since 1890, federal cartographers have relied on the decisions of the U.S. Board on Geographic Names — the 125-year multi-agency federal program to standardize names of geographic features — that operates under the umbrella of the Department of the Interior.

“The Board on Geographic names has its intellectual roots in the earliest map-making efforts,” explains Theberge. To illustrate the need for standardization in the U.S., Theberge points to a November 7, 1805, report by the famed explorer William Clark.

“Ocian in view! O! the joy… Great joy in camp we are in view of the Ocian, this great Pacific Octean which we been So long anxious to See.”

As Theberge points out: “In one sentence, Clark gives the reasons for the Board.”

EEZ mapping project achieved policy and technical objectives for U.S.

The four NOAA commanding officers led surveys for the EEZ mapping project, which was active between 1984 and 1991. The project originated from President Ronald Reagan’s 1983 proclamation establishing a U.S. Exclusive Economic Zone, which created a 200-mile-wide nautical “belt” around the U.S. and territories, adding over 3,000,000 square nautical miles to the nation’s jurisdiction.

In response to the EEZ proclamation, both NOAA and the United States Geological Survey embarked on mapping programs. The USGS used a deep-water, very wide swath, side scan sonar system called GLORIA, which gave a qualitative picture of the seafloor somewhat akin to aerial photography; and NOAA used both medium depth multibeam sounding systems (150 meters to 1000 meters) and deep water systems (1000 meters depth to full oceanic depth), which gave quantitative (depth) values. As opposed to widely-spaced single beam trackline in deep water areas, NOAA’s program attained 100% bottom coverage with the then-new (to the civil community) multibeam systems.

The Gulf of Mexico was one region of the mapping program, as maps were produced for waters of the East Coast, Gulf of Mexico, West Coast, Alaska, and Hawaii. In a paper presented at the 1988 Exclusive Economic Zone Symposium, the goals of mapping in the Gulf of Mexico (actually applicable to all EEZ regions) were espoused:

  • Build the foundation of a marine environmental geographic information system for solving global and regional change problems.
  • Improve targeting of scientific and engineering efforts involving higher-cost, manned, submersible investigations and remotely-operated vehicle operations.
  • Better manage the living and mineral resources of the EEZ.
  • Better model the physical oceanography of the Gulf of Mexico, including factors affecting water mass movements, acoustic propagation paths, and sediment transport regimes.
  • Model geological and geophysical hazards affecting coastal regions and offshore construction.
  • Discover and/or define unique or previously unknown marine environments for designation as marine sanctuaries or protected areas.
  • Improve and enhance nautical charts and bathymetric maps.

This early multibeam mapping effort helped develop many concepts that Coast Survey later built on in shallow water multibeam charting, such as methods for correcting and calibrating beam pointing errors, use of GPS, ray-bending algorithms to account for refraction of beams, etc. Philosophically, the project also helped pave the way for the era of digital paperless survey data acquisition and processing, as EEZ survey operations significantly reduced the vast amounts of paper fathograms, printouts, and other products that accompanied classical hydrographic survey operations.

In 1992, a report by the Marine Board of the National Research Council addressed the needs of mapping the EEZ. It noted:

“EEZ mapping and survey activities of the USGS and NOAA have been impressive, especially given the limits on funding, assets, and human resources. …The current activities depend on individual efforts and assets that are, in many instances, borrowed or diverted from other projects.”

By the time the report was written, circumstances — including the grounding of the Queen Elizabeth II in Martha’s Vineyard Sound — dictated that NOAA devote more resources to inshore charting. The EEZ project was terminated but it left a legacy of new and improved methods, as well as a gentle nudge towards a paradigm shift from primarily paper data acquisition to digital data acquisition.

We still use the digital data gathered by the EEZ mapping project. During the monitoring of the Deepwater Horizon oil spill, NOAA used the data as its underlying bathymetric dataset. The spill was near Whiting Dome and Mitchell Dome, which were named respectively for their discovery by the NOAA ships Whiting and Mt. Mitchell during the EEZ project.

New project picks up where the EEZ project left off

Today, a new national deep-water bathymetric mapping project is underway, picking up where the EEZ project left off. The Office of Coast Survey’s Joint Hydrographic Center at the University of New Hampshire, along with NOAA’s Office of Ocean Exploration, is leading the bathymetric mapping work of the interagency U.S. Extended Continental Shelf (ECS) Project. Using today’s modern high-resolution descendants of the multibeam systems aboard Whiting and Mt. Mitchell, the ECS Project the ECS Project is mapping the continental slope in several regions, including the Gulf of Mexico, to establish the outer limits of the U.S. continental shelf in areas beyond the 200 nautical mile EEZ. Andy Armstrong, of recently named Armstrong Basin fame, continues to use his bathymetric mapping expertise, now conducting mapping operations for the ECS Project.

NOAA begins 2016 hydrographic survey season   Leave a comment

New data will update nautical charts around the country

As sure as spring arrives, NOAA vessels and independent contractors are hitting the seas for the nation’s 182nd hydrographic surveying season, collecting data for over two thousand square nautical miles in high-traffic U.S. coastal waters.

NOAA Ship Ferdinand Hassler heads out to survey.

NOAA Ship Ferdinand Hassler heads out to survey.

“Nautical charts are the foundation for the nation’s maritime economy, and NOAA hydrographers spend months at sea, surveying critical areas to ensure safe navigation for the shipping, fishing, and boating communities,” said Rear Admiral Gerd Glang, director of the Office of Coast Survey.

“Spring is the traditional beginning of the survey season,” Glang explained. “After a winter of data processing, ship maintenance, and personnel refresher training, the NOAA survey ships and Coast Survey navigation response teams are anxious to get to their survey assignments.”

U.S. waters cover 3.4 million square nautical miles, including a seafloor that is constantly changing due to storms, erosion, and development. To keep the nation’s suite of over a thousand nautical charts up to date, the Office of Coast Survey annually plans hydrographic survey projects to measure water depths and identify new navigational hazards. Survey planners consider requests by marine pilots, port authorities, the Coast Guard, the boating community and others when setting the year’s schedule.

Planned 2016 survey projects

  • Penobscot Bay, Maine, most of which hasn’t been surveyed since the 1950s, will get its first modern NOAA multibeam echo sounder survey, to acquire data for needed chart updates.
  • Buzzards Bay, Massachusetts, is the subject of a multiyear project for updating charts. 2016 is the third year, and the survey ship will validate U.S. Geological Survey interferometric survey data for charting, and will align with NOAA’s Remote Sensing Division lidar data.
  • Chesapeake Bay is also the subject of a multiyear survey project for updating charts. NOAA Ship Ferdinand R. Hassler will work offshore, while launches from NOAA Ship Thomas Jefferson will survey in the vicinity of Hampton Roads concurrent to the ship’s maintenance period in drydock.
  • Wilmington, North Carolina, survey project will support the U.S. Coast Guard Atlantic Coast Port Access Route Study.
  • Savannah, Georgia, needs hydrographic survey data for the port deepening project in preparation for post-Panamax ships.
  • Sabine, Louisiana, will have a continuation of last year’s project to survey part of the approaches to Port Arthur and Calcasieu.
  • Atchafalaya, Louisiana, will have a continuation of last year’s project to survey part of the approaches to Morgan City.
  • Approaches to SW Pass, Louisiana, will be surveyed at the request of the U.S. Coast Guard and the Bureau of Ocean Energy Management, to provide new chart data for consideration of a proposed anchorage area near Port Fourchon.
  • Chandeleur Sound, Mississippi, will have surveys to acquire critical updates since Hurricane Katrina.
  • Yukon River, Alaska, will be partially surveyed to validate a new charting approach using satellite-derived bathymetry.
  • Etolin Strait, Alaska, will also validate satellite-derived bathymetry data, as well as establish a survey corridor between Nunivak Island and mainland Alaska. This project will provide data for some of the new charts identified in the U.S. Arctic Nautical Charting Plan.
  • Dutch Harbor, Alaska, will benefit from a shore-based survey operation simultaneous with a NOAA Fishpac project, as the ship’s smaller launches will acquire more data at the site of the 2015 M/V Fennica grounding.
  • Kodiak Island, Alaska, will have another year of a multi-year surveying campaign in this critical area for increasing fishing and tourism.
  • Prince of Wales Island, Alaska, needs updated survey data to improve charts to Tlevak Strait, expanding to Sukkwan Strait and Howkan Narrows.
  • Behm Canal, Alaska, will get its third (and final) year of survey work to circumnavigate Revillagigedo Island as well as George and Carol Inlet, Alaska.

The surveys will be conducted by NOAA’s four dedicated survey ships ‒ Thomas Jefferson, Ferdinand Hassler, Rainier, and Fairweather ‒ and private companies that survey on a contract basis with NOAA. The NOAA ships are operated and maintained by the Office of Marine and Aviation Operations, with hydrographic survey projects managed by the Office of Coast Survey.

The schedule for Coast Survey’s navigation response teams (NRTs), 3-person boats that work closer in shore to acquire data for nautical chart updates, was announced earlier.

Alaska EastCoast GulfofMexico

%d bloggers like this: