NOAA positions hydrographic survey assets in Hawaii in preparation for Hurricane Lane

As Hurricane Lane approaches the Hawaiian Islands as a Category 4 storm with wind gusts reaching 150 mph in some locations, NOAA is prestaging personnel and hydrographic survey assets to help speed the resumption of shipping post storm.

According to a recent news release from the office of Governor David Ige of Hawaii, the state is in the process of closing commercial harbors. Gov. Ige states, “This is important because the harbors are our lifeline to essentials such as food and products. We must protect the harbors and piers so that shipping operations can resume once the storm has passed.”

Projected path of Hurricane Lane as seen in nowCOAST™
Projected path of Hurricane Lane as seen in nowCOAST™ as of early afternoon (EDT) August 23, 2018.

Coast Survey mobilizes survey teams to search for underwater debris and shoaling after hurricanes, to speed the resumption of ocean-going commerce. In this case, since navigation response team (NRT) vessels are unable to reach Hawaii, NOAA’s mobile integrated survey team (MIST) is traveling to Oahu with survey equipment in tow. Comprised of hydrographic survey experts with experience in rapid emergency response, the MIST can quickly install a sonar kit on a “vessel of opportunity” and be out on the water as soon as practicable. For the first time, the team will be using a new multibeam echo sounder kit, adding to the traditional arsenal of side scan and singlebeam sonars. This new capability will allow the MIST to provide high resolution depth information throughout the survey area.

As seen most recently in response to hurricanes Harvey, Irma, and Maria, the team’s flexibility allows them to quickly respond in waterways where the U.S. Coast Guard needs them most. For Hurricane Lane response, the MIST members include Mike Annis, NOAA scientist and lead of NOAA’s MIST; Erin Diurba, team member of NRT Galveston, Texas; Lt. j.g. Dylan Kosten, officer in charge of NRT New London, Connecticut; and Michael Bloom, team member of NRT New London.

Mike Annis (right), NOAA scientist and lead of NOAA’s Mobile Integrated Survey Team (MIST), and LCDR Jonathan French, mount side scan sonar on a Coast Guard vessel in Key West.
NOAA MIST will install hydrographic survey equipment on a “vessel of opportunity” in Hawaii similar to their project in Key West, Florida, (pictured) when responding to the aftermath of Hurricane Irma in 2017. Mike Annis (right) and Lt. Cmdr. Jonathan French (left) mount a side scan sonar on a Coast Guard vessel.

NOAA’s northwest and Pacific Islands regional navigation manager, Crescent Moegling, is currently embedded within the U.S. Coast Guard Sector Honolulu Marine Transportation System Recovery Unit (MTSRU) and working with Coast Guard District 14, the U.S. Army Corps of Engineers, and the Department of Transportation Harbors. She will be assisting with port survey prioritization and providing information on the status of NOAA’s survey assets and their readiness. As soon as the Coast Guard can assess where survey response is needed most, the NOAA team will deploy.

NOAA and Coast Guard survey shallow channels in eastern Chesapeake Bay to update aids to navigation

By Lt j.g. Patrick Debroisse

The area of the Chesapeake Bay along the Eastern Shore of Maryland is one of our nation’s treasures. Home to unique underwater grasses, fish, and shellfish, this complex transition from river to sea is also home to millions of tons of sediment delivered annually from eroding land and streams. Recreational boaters, fisherman, and cruising vessels are keenly aware of the shifting sands and sediment deposits in these shallow waters and rely on aids to navigation (ATON) — a system of beacons and buoys — to travel safely to and from the harbors and docks along the shoreline.

U.S. Coast Guard (USCG) Aids to Navigation Team (ANT) from Crisfield, Maryland, recently requested the assistance of NOAA’s Office of Coast Survey to help identify areas where ATON were in need of repair, relocation, or removal due to the shifting sediment of these nearshore areas. Crew from NOAA research vessel Bay Hydro II and from navigation response team (NRT) 1 (homeported in Stennis, Mississippi) operated an Echoboat autonomous surface vehicle (ASV) from a USCG vessel to survey these shallow waters. 

Lt j.g. Patrick Debroisse readies the Echoboat ASV for hydrographic survey
Lt j.g. Patrick Debroisse (NOAA, junior officer in charge, Bay Hydro II) readies the Echoboat ASV for hydrographic survey in the nearshore waters of the Chesapeake Bay.
Alex Ligon (NOAA NRT1) works with USCG Boatswain Mate (BM) 1 Lee Durfee, BM2 Collin Blugis, and Machinery Technician 3 Matt Kemp to load the ASV on the USCG vessel.
Alex Ligon (NOAA, NRT 1) works with USCG Boatswain Mate (BM) 1 Lee Durfee, BM 2 Collin Blugis, and Machinery Technician 3 Matt Kemp to load the ASV on the USCG vessel.

The team first visited Slaughter Creek, near Taylor’s Island, where the USCG believed sediment in the channel was shifting, requiring potential ATON relocation. The second area was in Pocomoke River, east of Smith Island, where shoaling in the already shallow channel was of concern, as well as the existence of unused ATON anchors. The ASV, equipped with side scan sonar to search for underwater objects, and a multibeam echo sounder to check the contours of the channels, surveyed both areas.

Once the survey data is processed and delivered to the USCG ANT, they can make informed decisions about ATON maintenance. Finding old ATON anchors and recycling them back into service is a potential cost savings for the USCG. NOAA and the USCG plan to operate the Echoboat ASV in this area again, surveying the waters for a possible wreck in Fishing Bay and for old ATON moorings replaced by a day shape.

Echoboat ASV surveys in the Pocomoke River Channel to investigate possible shoaling.
Echoboat ASV surveys in the Pocomoke River channel to investigate possible shoaling.
Alex Ligon (NOAA NRT 1) watches the ASV data in real-time. The ability to watch the data real time allows real-time decision making for survey planning and preliminary products to be provided to the Coast Guard ANT.
Alex Ligon (NOAA, NRT 1) watches the ASV data in real-time, which allows for real-time decision making for survey planning and preliminary products.

Coast Survey recently surveyed the waters of Lake Champlain using the Echoboat ASV.  This portable unit provides flexibility and allows survey teams to further develop procedures and to train more individuals in its use for future operations around the country.

NOAA mobile integrated survey team prepares for hurricane season

NOAA’s Office of Coast Survey is the federal leader in emergency hydrographic response. Consecutive strong storms during the 2017 hurricane season made response efforts challenging, and emphasized the importance of having a well-trained and versatile staff. Coast Survey’s regional navigation managers, navigation response teams (NRTs), and mobile integrated survey team (MIST) worked with partners before and after the storms to quickly and safely reopen ports and waterways.

The MIST equipment is a mobile, quick-install side scan and single beam sonar kit that can be quickly set up on a vessel of opportunity. Recently, Coast Survey sent the MIST team to Astoria, Oregon to conduct a hydrographic survey of the Mott Basin area, which the U.S. Coast Guard (USCG) requested to confirm charted depth and obstruction data.

The MIST group used this as an opportunity to give NRTs experience with setup, usage, and tear down of MIST equipment, as well as to perform a system test prior to the upcoming hurricane season.

Data collection in the Mott Basin aboard the USCG Trailerable Aids to Navigation Boat (TANB) vessel
Data collection in the Mott Basin aboard the USCG Trailerable Aids to Navigation Boat (TANB) vessel

The team installed and integrated the MIST equipment on a USCG Trailerable Aids to Navigation Boat (TANB) vessel. TANB vessels are normally used for navigation aid maintenance, but can serve as a vessel of opportunity for hydrographic surveys using MIST equipment. During the 2017 hurricane season, NOAA used USCG vessels of opportunity in Florida and Puerto Rico for rapid hydrographic survey response.

Setting up the MIST equipment on a USCG TANB vessel
Setting up the MIST equipment on a USCG TANB vessel

The deployment to Mott Basin in not only provided USCG with hydrographic data to meet their operational mission, but also allowed NOAA to exercise equipment that will be critical to any upcoming storm or emergency response.

The MIST and USCG survey crew. Tim Wilkinson (NRT3, far left),Erin Diurba (NRT4, second from left), Alex Ligon (NRT1, second from right) and Mike Annis (HQ, far right) represented Coast Survey.
The MIST and USCG survey crew. Tim Wilkinson (NRT3, far left), Erin Diurba (NRT4, second from left), Alex Ligon (NRT1, second from right) and Mike Annis (HQ, far right) represented Coast Survey.

Coast Survey’s NRTs conduct hydrographic surveys to update NOAA’s suite of nautical charts. The teams are strategically located around the country and remain on call to respond to emergencies speeding the resumption of shipping after storms, and protecting life and property from underwater dangers to navigation.

Coast Survey uses unmanned technology to find submerged danger to navigation

Coast Survey has been discovering and marking the locations of underwater dangers since our surveyors took the nation’s first official ocean soundings in 1834. We’ve used or developed all the technological advancements – lead lines, drag lines, single beam echo sounders, towed side scan sonars, and post-1990 multibeam echo sounders – and now we can point to a new major advancement for fast deployment and quick recovery. In February, Coast Survey’s Mobile Integrated Survey Team (MIST) used an autonomous underwater vehicle (AUV) to locate a submerged buoy that was interfering with anchorages in the Chesapeake Bay.

“You and the crew of the HASSLER put us right where we needed to be!” said a confirmation email from the U.S. Coast Guard to NOAA Lt. Ryan Wartick, one of Coast Survey’s navigation managers. “Thanks for the great work!”

The problem began in early February, when an outbound tug struck and dragged a very large buoy and its anchor to an unknown location in the vicinity of Chesapeake Bay’s Thimble Shoal Channel. The U.S. Coast Guard closed adjacent anchorages because of the potential danger to navigation posed by the submerged buoy, affecting commercial vessel operations in the area.

On February 9, Lt. Wartick sat down with the U.S. Coast Guard, and other local and federal agencies, to arrange for Coast Survey mobilization in a collaborative effort to find the missing G “11” buoy. The Coast Guard asked Coast Survey to search Anchorage “A” on Friday, February 12, and provided a 45-foot vessel for our use.

AUV preparation
Lt. Ryan Wartick and MIST responder Robert Mowery prepare the AUV for deployment.

Coast Survey’s MIST responders Robert Mowery and James Miller were able to pack up the AUV in Maryland and drive to USCG station on Naval Little Creek amphibious base, where they set up, calibrated, and hit the water on February 12 – and promptly located five potential targets, one of which looked especially promising.

buoy
AUV’s image of buoy

This side scan imagery, acquired by the Hydroid REMUS 100 AUV during the Coast Survey MIST initial search on February 12, shows the sunken buoy – although, at that time, the team was not 100% confident it was the buoy. The intensity of the sonar return and the dimensions of the target strongly supported their suspicion that this was the buoy, but the target was at nadir on the side scan profile, which introduces uncertainty in this type of system. They did, however, deem it the most likely among the five possible targets revealed by the AUV data.

1f5b242c-0e9d-4b87-8bc1-2afca77d928d

Fortunately, NOAA Ship Ferdinand Hassler was departing Norfolk on February 17, on their way to their survey project for the approaches to the Chesapeake, and so they made a slight adjustment in their route. The ship’s hydrographers used their multibeam echo sounders to check the targets, based on the MIST AUV data, and they confirmed that the top AUV target was indeed the buoy. The multibeam data also verified that none of the other search targets pose a danger to navigation or risk fouling an anchor for ships in the anchorage.

With the confirmation, the U.S. Coast Guard was able to remove the buoy and re-open the area for maritime traffic.

Buoy is recovered.
Buoy is recovered.

The Coast Survey Development Lab has been evaluating the use of autonomous underwater vehicles as tools for hydrographic surveying in support of NOAA’s nautical charting mission. The use of AUVs, in collaboration with NOAA’s manned survey fleet, could greatly increase survey efficiency. Additionally, as this response confirmed, their flexible deployment options make AUVs a valuable tool for marine incident response.