NOAA makes forecast data easier to display in marine navigation systems

By, Neil Weston, Office of Coast Survey Technical Director

Have you ever been on the water when weather and sea conditions suddenly change? As mariners can attest, decisions need to be made quickly. Many rely on NOAA operational forecast system (OFS) data—a national network of nowcast and forecast models—to make decisions about their situation on the water. NOAA OFS are available to the mariner as data streams through a variety of websites, including nowCOAST™. However, only recently has OFS data been viewable on marine navigation systems, making it even more convenient for those needing to make critical decisions on the water.

Rose Point’s Coastal Explorer displays NOAA surface current data.
Rose Point’s Coastal Explorer, one example of many navigation software packages available, displays NOAA surface current data.

NOAA’s Office of Coast Survey recently started producing OFS data in formats that are easily ingested by marine navigation systems, such as Electronic Chart Display and Information Systems (ECDIS), portable pilot units (PPU), and electronic charting systems (ECS). These data not only have the potential to display nowcasts and forecasts in real-time on navigation system displays, but can also optimize route planning for commercial ships. Ultimately, these model forecast data will be available for machine-to-machine exchange, with data file sizes small enough to enable delivery from shore to vessel over existing communication and data networks.

Nowcasts and forecasts are scientific predictions about the present and near future state of a coastal marine environment including water levels, currents, salinity, and sea surface temperature for many coastal regions. OFS are national networks of operational nowcast and forecast models that consist of automated integration of observing system data, hydrodynamic model predictions, product dissemination, and continuous quality control monitoring. These versatile systems can be used for a variety of activities such as search and rescue, recreational boating, fishing, and storm effect tracking.

Seapilot Navigation computes the optimized route from start to finish via any waypoints, considering wind, current, land, shallow water and the properties of the boat.
Seapilot Navigation computes the optimized route from start to finish via any waypoints, considering wind, current, land, shallow water and the properties of the boat. This system also displays NOAA OFS data (surface currents).

Initially, the Coast Survey converted surface current data for several OFS regions from a format primarily used by scientists (netCDF), to a format more widely used in meteorology (GRIB 1 & 2). A parallel developmental effort is underway to include conversion of netCDF data to an internationally recognized format (HDF5) adopted by the International Hydrographic Organization (IHO). Within the IHO, many product specifications, including tides, water levels, and currents, are developed using HDF5 encoding. The goal is to produce products and services that comply to internationally accepted standards such as those adopted by the IHO. Compliance with these standards increases data interoperability, allowing navigation platforms to easily ingest and display the data. Coast Survey plans to disseminate OFS data in the HDF5 format by the end of 2018.

Any mention of a commercial product is for informational purposes and does not constitute an endorsement by the U.S. Government or any of its employees or contractors.

NOAA Office of Coast Survey wraps up a busy 2017 hurricane season

The 2017 Atlantic hurricane season was powerful, with the strongest storms occurring consecutively from late August to early October. The sequential magnitude of four hurricanes in particular—Harvey, Irma, Maria, and Nate—made response efforts challenging for NOAA’s Office of Coast Survey. Coast Survey summarized this season’s response efforts along with the efforts of NOAA Ship Thomas Jefferson (operated by NOAA’s Office of Marine and Aviation Operations) in the following story map.


NOAA Ship Fairweather uses new technology to improve survey efficiency

By ENS Peter Siegenthaler

Following the scheduled winter repair period, Fairweather is kicking off the 2017 field season in Tlevak Strait; the waterway between Dall Island and Prince of Wales Island in Southeast Alaska. This area was last surveyed between 1900 and 1939, and the lead-lines used at the time to determine depths were susceptible to omission of rocks and other features in an area. Using the latest innovations in hydrographic technology, Fairweather will be resurveying these areas with complete coverage multibeam echo sounder bathymetry. This allows Fairweather to identify any rocks or shoal features missed in prior surveys, increasing the safety for local communities, whose economies and livelihoods are dependent on maritime transportation of goods.

One of the new developments Fairweather’s survey department in particular is excited about is a new software program affectionately named “Charlene.” Charlene was developed by PS Eric Younkin at Coast Survey’s Hydrographic Systems and Technologies Branch (HSTB) to automate the night processing workflow. This simplifies hours spent each night converting and correcting raw sonar data into an automated script which takes in raw data at one end and generates products at the other. Initial results are promising, and the ship is looking forward to fully integrating Charlene into the processing workflow.

Another new development for the 2017 field season is new multibeam sonars for the ship’s survey launches, which were installed during the winter repair period. The preliminary data acquired by these sonars has shown vast improvement over their predecessors’ data, which will go a long way towards reducing data processing timelines. The new sonars do this by automating most of the acquisition parameters in real-time, far faster and more effectively than could be achieved manually. They also take advantage of a multitude of hardware and software advances that have taken place over the past several years, resulting in systems that are quieter, smaller, and easier to operate.

Fairweather is continuing to use and develop the launch-mounted lidar systems (lasers) for the acquisition of shoreline data. This was another HSTB-developed process that was validated during the 2016 field season. This year, Fairweather is using those lessons learned in order to further improve our acquisition workflow. These systems create accurate real-time point clouds of features above the waterline and have revolutionized the way hazards to navigation are documented. Before the use of lasers, shoreline verification frequently required physically touching rocks and obstructions above the water surface for accurate measurement and placement. This process involved increased risk, took more time, and produced less accurate data. The new laser workflow addresses all these limitations. By scanning the shoreline at a distance with calibrated equipment, efficiency, accuracy, and safety are all greatly improved.

Overall, Fairweather is enthusiastic about being back at work in Alaska. With her new software, sonar systems, and dedicated crew, the stage is set for and productive field season!

Area surveyed by Fairweather May 30- June 10, 2017.
Area surveyed by Fairweather May 30- June 10, 2017.

Storm surge model provides vital info for #Blizzard2016

NOAA runs operational forecast modeling systems that provide users with forecast guidance of water levels, currents, and water temperatures for the next 60 hours. The Extratropical Surge and Tide Operational Forecast System (ESTOFS), a storm surge model developed by Coast Survey in 2012, is a vital source of information for forecasting coastal flood events during this weekend’s blizzard.

See the ESTOFS output here, or check nowCOAST for model output integrated with other data.

ESTOFS storm surge forecast guidance valid 2PM EST Jan. 23, overlaid with National Weather Service surface wind forecast (depicted using curved wind barbs)
ESTOFS storm surge forecast guidance valid 2 p.m. EST Jan. 23, overlaid with National Weather Service surface wind forecast (depicted using curved wind barbs)
ESTOFS storm surge forecast guidance valid 1 p.m. EST Jan 23, for New Jersey coast, overlaid on NOAA's nautical chart
ESTOFS storm surge forecast guidance valid 1 p.m. EST Jan 23, for New Jersey coast, overlaid on NOAA’s nautical chart