Archive for the ‘Nautical charts’ Category

NOAA homeports navigation response team at Stennis Space Center, Mississippi   Leave a comment

NOAA’s Office of Coast Survey announced that they will homeport one of their six navigation response teams at the John C. Stennis Space Center, Mississippi. The team will be co-located with NOAA’s National Data Buoy Center (NDBC) and adjacent to other federal and state partners involved in seafloor mapping and unmanned hydrographic survey systems.

“Coast Survey strategically places navigation teams around the country, and having a team permanently based at Stennis will speed our response to navigational emergencies in the Gulf,” said Rear Admiral Shepard Smith, Coast Survey director. “We are also looking forward to potential collaboration on emerging hydrographic technologies with our partners there.”

NOAA plans to grow the navigation response team at Stennis initially to include five people and a suite of mobile survey equipment, including unmanned systems, that can perform a variety of coastal mapping missions and respond to urgent hydrographic survey needs.

bouycenter

Helmut Portmann, director of the National Data Buoy Center, and other NDBC staff provide Rear Admiral Shepard Smith and Lt. Cmdr. Jason Mansour a tour of NDBC at Stennis.

 

“The NOAA Data Buoy Center sees value in collaborating with Coast Survey’s navigation response team as the center is interested in broadening its activities from predominantly moored buoys to all manner of ocean observation tools, including maritime unmanned systems,” said Helmut Portmann, director of NDBC.

This long term facilities arrangement at Stennis will support the team’s basic operations and will also be conducive to the research, development, and implementation of unmanned systems. The use of these systems greatly increases survey efficiency, and their flexible deployment options make them a valuable tool for marine incident response.

bouycenter3

NDBC staff demonstrate hourly buoy observations and other system capabilities at the center to Rear Admiral Smith and Lt. Cmdr. Mansour.

 

“Coast Survey has over a decade of experience working with unmanned systems, using both small and large vehicles – underwater and on the water’s surface. We are working toward increasing this capability with our navigation response teams,” Smith said.

In addition to the synergies with the NOAA’s Buoy Center, the Navy has unmanned maritime systems operations based out of Stennis, and the University of Southern Mississippi is developing unmanned systems training classes.

“Placing NOAA’s Coast Survey Navigation Team at Stennis strengthens the expertise and partnership that already exists between NOAA, Navy and the University of Southern Mississippi,” said Deputy Commander Bill Burnett, Naval Meteorology and Oceanography Command.  “Obviously, Stennis is the place you want to be as they continue to lead the nation in the employment of unmanned systems to conduct hydrography.”

In the years since Deepwater Horizon, the Gulf coast has emerged as a regional unmanned systems hotspot, with several commercial companies designing and manufacturing unmanned maritime systems.

NOAA’s navigation response teams, part of Coast Survey, survey the seafloor in ports and harbors that have undergone infrastructure updates, shoreline alterations, or seafloor changes. They measure depths and look for underwater hazards that could endanger vessels, to update nautical charts for commercial and recreational mariners.

Posted January 4, 2017 by NOAA Office of Coast Survey in Nautical charts

NOAA survey ships adopt laser scanners to improve safety at sea   4 comments

How tall is that rock, really? Is that islet charted correctly? Mariners will have greater confidence in the location and height of charted features as NOAA’s hydrographic ships increase their use of newly adopted laser technology to measure and locate topographical features like rocks, islets, and small islands.

Recently, Lt. j.g. Patrick Debroisse, junior officer on NOAA Ship Fairweather, trained his NOAA Ship Rainier colleagues on how to use the topographic laser that they will soon be receiving.

Fairweather used this laser throughout this past season for feature attribution, and I was tasked with creating the procedures and training other ships,” Debroisse reports. “Rainier will be the next ship to receive the lasers, followed by the East Coast ships [Thomas Jefferson and Ferdinand R. Hassler].”

laser image of NOAA ships

Laser image of NOAA Ships Fairweather, Rainier, and Shimada moored at Marine Operations Center – Pacific, acquired during training

 

NOAA charts features such as rocks, piles, islets, kelp beds, and buoys, to give the mariner a clear picture of the dangers that could be in the area. Along Alaska’s and Maine’s rocky shores, for instance, features can be especially important because the tide ranges can be large. It’s especially important to accurately measure a rock at low tide, so a mariner will know its depth when they can’t see it at high tide.

Features on chart 16604

This area on chart 16604 illustrates features that could use the precision of topographic laser scanning.

 

Charted features are also used for visual points of reference during navigation.

Until recently, hydrographic ships’ launches were used to locate the features. To get a reasonable location, the launch would carefully approach the rock or other feature, and “kiss” it with their bow. They would then add the five feet from the boat’s GPS unit to the feature, and mark it on their field hydrographic sheets for use by the cartographers. If the seas are too heavy, or the area too rock-strewn, the surveyors stand on the ship or shore, and use a hand-held laser range finder to measure the height and distance of the feature, and then note the time so it can be corrected for the tide.

One of Rainier's four launches at work in Uganik Bay.

One of Rainier‘s four launches at work in Uganik Bay.

 

This laser technology will be safer than using a launch, and more precise than is possible with the human eye. The laser uses focused light to find and place objects accurately, similar to the way sonar is used to find the seafloor. The laser head produces sixteen laser beams, which reflect off the target object and are received back by the laser head. The computer then uses that data, along with precise positioning and attitude (roll, pitch, and yaw — or orientation) data, to determine the height and location of the object.

These infrared lasers are invisible and completely safe to the eyes of humans and any animals in the area. Also, unlike airborne lidar units that obtain shallow water bathymetry, the ships’ laser cannot penetrate the water.

Fairweather worked with the Coast Survey Development Lab to test this laser scanner, to determine its feasibility as a topographical tool in the Alaskan environment,” Debroisse says. “We found that this laser method increased the speed and accuracy of data acquisition, and increased the safety of the boat crews completing these surveys.”

And safety, after all, is important for everyone from the NOAA charting teams to the millions of chart users.

Season’s Greetings   1 comment

ocs-holiday-card-v2

Illustrated by Kristen Crossett, NOAA Office of Coast Survey

Posted December 20, 2016 by NOAA Office of Coast Survey in Nautical charts, Poster

Fast chart update of navigation danger protects Georgia boaters   Leave a comment

Thanks to a combination of determination and technical advancements, Coast Survey was able to locate, report, and chart a danger to navigation within two weeks – a major improvement over the three-to-ten-year chart update protocol of only a few years ago.

On Monday, November 14, a Coast Survey navigation response team hit the waters of St Simons Sound, off the coast of Georgia, when the U.S. Coast Guard asked us to find a sunken fishing vessel. By the next morning, the team of James Kirkpatrick and Kyle Ward (who augmented on the project, from his normal duty as navigation manager in Charleston), reported to the Coast Guard, noting that the wreck is very shoal. They also observed recreational vessels transiting the area every 10 to 15 minutes. Coast Survey quickly issued an official Danger to Navigation Report.

 

chart_overview

Location of the wreck

mb1

Wreck as seen with multibeam echo sounder

sss1

Wreck as seen with side scan sonar

 

The team’s hydrographic data determined a least depth of 0.4 meters (1.3 feet) at position 31-07-34.41N// 081-25-15.88W. The vessel appears to be lying on its port side with the bow pointing in an approximate SE orientation with the stern slightly higher than the bow. The least depth appears to be on some type of rigging or fishing gear protruding from the midship area.

Recognizing that a boat could easily hit the submerged wreck, the navigation response team asked Coast Survey cartographers to quickly add it to the charts. The cartographers acted immediately, applying the wreck symbol to paper, raster, and electronic charts of the area. The cartographers, working with branch chief Ken Forster, will publish the updated charts with the next cycle of weekly updates, scheduled for Wednesday, November 23.

image001

Coast Survey is updating charts 11506 and 11502, and ENCs US5GA13M and US4GA11M

 

Finding and charting dangers to navigation are our highest priorities. We encourage mariners who suspect dangers, or who want to report any chart discrepancy, to file a fast and easy report on our website.

Posted November 18, 2016 by NOAA Office of Coast Survey in Nautical charts

NOAA releases new nautical chart for the Port of Palm Beach, Florida   Leave a comment

NOAA has issued a new nautical chart for the Port of Palm Beach, Florida, an important distribution center for commodities being shipped all over the world, and especially the Caribbean Basin.

The Port of Palm Beach operations include containerized, dry bulk, liquid bulk, break-bulk, and heavy-lift cargoes. It is the only port in South Florida with an on-dock rail where the Florida East Coast Railway provides twice-daily service to the port’s rail interchange.

The Palm Beach Harbor Pilots Association asked Coast Survey for the new chart, citing the dangers confronting navigators who approach the port and anchor offshore using the small scale coverage and corresponding lack of detail currently available on chart 11466 (1:80,000). With more and bigger vessels entering the port, the larger scale inset helps pilots navigating within the turning basin and surrounding infrastructure. This is especially important because it is located within the traffic flow of the Intracoastal Waterway.

In consultation with the Palm Beach Pilots, the U.S. Coast Guard Sector Miami, Port of Palm Beach (Operations Division), and the Army Corps of Engineers Jacksonville District, Coast Survey developed the new chart specifications. All parties agreed that the new 1:15,000 scale chart and a 1:5,000 scale inset would enhance navigational safety and greatly benefit port operations.

In order to create the new chart, new data had to be collected. The National Geodetic Survey’s Remote Sensing Division collected additional bathymetric lidar data along the shoreline and Coast Survey’s navigation response team collected hydrographic data in the area just beyond where the U.S. Army Corps of Engineers data ends.

chart-data-sources

A larger scale chart for the Port of Palm Beach required additional data be collected by the National Geodetic Survey’s Remote Sensing Division and Coast Survey’s navigation response team.

Posted November 10, 2016 by NOAA Office of Coast Survey in Nautical charts

What does a zip file have to do with historic slave ship AMISTAD?   Leave a comment

History is never completely written. There are always new discoveries, new understanding.

NOAA historian John Cloud recently sent Coast Survey an intriguing report:

Yesterday I was looking for some historic Chesapeake Bay T sheets [topography drafts]…  Anyway, down in the bottom of a folder, there was a zipped file, dated 2009, never unzipped. I thought: well, since I have noticed this now, why don’t I unzip it? It turned out to be two overly rescaled jpgs, but using my Keith Bridge tricks [a technique developed by a former Coast Survey historical chart expert] I found the two full-scale originals. It was one chart, with a small part cut off to make two separate files: the original 1838 hydrography for New Haven Harbour!

This is the basis for the 1838 engraved chart for Congress, the second published Coast Survey chart. (The first was based on Lt. Gedney’s partial survey of Newark Bay, NJ and the mouth of the Hackensack River, 1837.) The New Haven work was 1838. In 1839, the same Lt. Gedney and company captured the slave ship Amistad and brought the ship and captives to New Haven, claiming the escaped slaves as property. [UPDATE, 10/27/2016: Delving deeper into Gedney’s actions, it turns out he docked the ship in New London, while the captive Africans were brought to New Haven.] Then later, John Quincy Adams persuaded a judge they had freed themselves on the boat and were no longer slaves. 

Unzipping the files happened within an hour or so of getting an email from Michelle Zacks, a scholar of marine environmental history who has explored historic Coast Survey field survey notebooks as sources for her ongoing project on the antebellum oyster industry and the lives of enslaved and free African Americans in the Chesapeake region. That research helped lead to her new job, as the associate director of the Gilder Lehrman Center for the Study of Slavery, Resistance, and Abolition, at Yale, which is in: New Haven!

It all happened just like that!  Like the chart “wanted” to emerge back into the Amistad story.

We weren’t able to trace the origination of that zip file, but it was obviously created by someone who didn’t realize the value of the historical images. And this, ladies and gentlemen, is why we value historians.

Coast Survey positioned to assist with port recovery   Leave a comment

hurricane-canaveral

National Weather Service image of Hurricane Matthew near Port Canaveral, Florida on October 7, 2016.

As Hurricane Matthew bore down on Florida, Georgia, and South Carolina, Coast Survey pre-positioned hydrographic survey vessels for immediate deployment, to help speed the reopening of commercial shipping at ports hit by high winds and storm surge.

Currently, our Central Coast Gulf navigation manager, Tim Osborn, embedded in Port Canaveral, Florida, and our Southwest navigation manager, Kyle Ward, are coordinating marine transportation system recovery priorities with the U.S. Coast Guard and port stakeholders in Florida, Georgia, South Carolina, and North Carolina.

Speeding the resumption of commercial vessel traffic has important human and economic considerations. For instance, Port Canaveral experienced winds over 60 knots and wave heights over 30 feet. Cruise ships are awaiting port entry and with about 3,000 passengers per ship, that is over 30,000 passengers (~15,000 crew) waiting for the port to be re-opened.

 

Video: Port Canaveral experiencing high winds from Hurricane Matthew on October 7, 2016.

 

An additional aid in the preparation for a hydrographic survey response is anticipating where and how big the storm surge will be along the coast. Just prior to the arrival of Hurricane Matthew, NOAA’s nowCOAST™ updated its system with the National Hurricane Center’s (NHC) potential storm surge flooding map which depicts the risk associated with coastal storm surge flooding resulting from tropical cyclones.

unnamed

NHC’s first potential storm surge flooding map for Hurricane Matthew on nowCOAST.

Posted October 9, 2016 by NOAA Office of Coast Survey in Nautical charts

%d bloggers like this: