NOAA Ship Thomas Jefferson presents survey work to Puerto Rico South Coast stakeholders

By Cmdr. Chris van Westendorp, Commanding Officer of NOAA Ship Thomas Jefferson

Almost one year following the passage and destruction of Hurricane Maria, NOAA Ship Thomas Jefferson has returned to Puerto Rico. Following the storm, Thomas Jefferson deployed in September 2017 for hydrographic hurricane response work in Puerto Rico and the U.S. Virgin Islands (PR/USVI). The ship and crew surveyed 18 individual port facilities to ensure safety of navigation and help re-open the region for maritime commerce. Thomas Jefferson’s second major project of 2018 has brought the ship back to Puerto Rico from August to November, conducting follow-up survey work along the north and south coasts.

tj-pr3
NOAA Ship Thomas Jefferson recovering hydrographic survey launch 2904 on September 7, 2018, in Bahia de Guayanilla, Puerto Rico. The vast majority of Thomas Jefferson’s 2017 and 2018 survey work in and around Puerto Rico was completed with the ship’s survey launches.

While anchored in Bahia de Guayanilla, Cmdr. Chris van Westendorp, commanding officer of Thomas Jefferson, was invited by the Puerto Rico South Coast pilots to speak at a South Coast Harbor Safety & Security Committee meeting in Salinas. Attended quarterly by area commercial, federal, and local maritime stakeholders, each meeting features presentations on a variety of topics such as harbor safety and preparedness, maritime security, and relevant oceanographic research (e.g. PR SeaGrant, PR Climate Change Commission).

tj-pr1
Cmdr. van Westendorp presents preliminary survey results to the Puerto Rico South Coast Harbor Safety & Security Committee from Thomas Jefferson’s 2018 hydrographic survey project in San Juan, Ponce, and vicinities, Puerto Rico.

Several presentations discussed ongoing Hurricane Maria recovery efforts, and conversations with attendees emphasized that storm effects still permeate businesses and the island economy. The meeting also revealed the existence of strong interagency relationships in the group, reflective of South Coast culture. These connections enable close and effective collaboration of agencies such as NOAA, U.S. Coast Guard, U.S. Army Corps of Engineers, and SeaGrant, in supporting the region’s environmental resources, economy, and security, as well as forming improved hurricane preparedness and response plans.

Accompanied by Coast Survey Atlantic Hydrographic Branch’s Julia Wallace (ERT), Cmdr. van Westendorp presented on nautical hydrography, including an outline of the ship’s 2017 post-Maria work, as well as current project plans and preliminary results. During and after the presentation, attendees showed particular interest in survey results in and around Guayanilla, Ponce, Jobos, Las Mareas, and Yabucoa; port areas previously identified by the South Coast pilots as critical for local and island-wide economies alike.  The Coast Guard Captain of the Port (based in San Juan) and his staff also engaged Cmdr. van Westendorp and Julia Wallace in conversations regarding the allocation and positioning of survey capabilities in preparation for major storm events in the PR/USVI region.

tj-pr2
From left to right: Capt. Alex Cruz (South Coast pilot and vice chairman, South Coast Harbor Safety & Security Committee [SCHSSC]), Cmdr. Chris van Westendorp (commanding officer, Thomas Jefferson), Capt. Eric King (Coast Guard Sector San Juan Captain of the Port), Mr. Luis Torres (Chairman, SCHSSC)
A year after the devastation of Maria, it is clear that Thomas Jefferson’s presence and ongoing work are gratefully received by and worthwhile to the people of Puerto Rico.

NOAA Ship Thomas Jefferson completes 2018 survey work in the Approaches to Houston-Galveston

By Lt. Charles Wisotzkey

NOAA Ship Thomas Jefferson departed the western Gulf of Mexico in early August 2018 after completing scheduled survey operations on the Approaches to Houston project. Data collected for the project will update nautical charts for the approaches to the main shipping channel leading to the ports of Houston and Galveston.

tj-galveston1
Thomas Jefferson‘s project area located southeast of the entrance to Galveston Bay.

The Port of Houston is the largest U.S. port in terms of foreign trade and petroleum products. The main shipping channel extends from Houston, down the Buffalo Bayou, through Galveston Bay, and into the Gulf of Mexico at the pass between Galveston Island and the Bolivar Peninsula. The approaches to Galveston Bay are heavily trafficked by all manner of commercial vessels. In fact, the anchorages outside of the entrance to Galveston Bay were among the busiest traffic areas the ship’s command had experienced.

tj-galveston2
Automatic Identification System (AIS) traffic near the entrance to Galveston Bay. Each red, green, and blue symbol represents a separate vessel. Most of the offshore AIS symbols represent, in this instance, large commercial vessels (MarineTraffic 2018).
tj-galveston3
A closer look at Thomas Jefferson‘s project area highlights its navigational characteristics.

Multiple safety fairways and numerous oil platforms with pipeline infrastructure are shown in the image above. The safety fairways are kept clear of oil and gas infrastructure and are used by large commercial traffic to transit around the Gulf of Mexico; however, obstructions are sometimes reported and charted within the bounds of the safety fairways. 

tj-galveston4
An example of an abnormal traffic situation caused by the presence of position approximate (PA) obstructions in the safety fairway that leads into the entrance to Galveston Bay.

The image above shows two charted position approximate (PA) obstructions within the safety fairway to the south of Thomas Jefferson’s main project area. As seen in the image, two vessels favor the north side of the safety fairway in order to avoid the charted PA obstructions and passing nearer to each other than would otherwise be prudent. In this case, both PA obstructions were disproved by Thomas Jefferson and will be removed from the chart.

Overall, the Approaches to Houston project was highly successful. Thomas Jefferson was able to collect over 9,500 linear nautical miles and more than 500 square nautical miles of survey data. In addition to the two PA obstructions described previously, Thomas Jefferson corrected the position of five navigationally significant wrecks and obstructions, disproved the existence of one additional navigationally significant charted obstruction, identified two previously uncharted wrecks, provided updated Aid to Navigation data to the U.S. Coast Guard, and located numerous uncharted and/or exposed pipelines. This work will improve chart quality for an area of critical importance to our nation’s economy.

tj-galveston5
The crew of the Thomas Jefferson, along with local Houston/Galveston NOAA partners, shared the positive impact of the ship’s work at a successful public relations event in Galveston, Texas, in July. From left to right: Ensign Sydney Catoire (Thomas Jefferson), Charles Rowland (Navigation Response Branch (NRB)), Alan Bunn (NOAA navigation manager), Erin Diurba (NRB), Katie Magee (National Weather Service (NWS)), Sarah Randall (NWS), Dan Jacobs (NRB), and Cmdr. Chris Van Westendorp (CO Thomas Jefferson). 

 

 

 

 

 

 

 

 

 

NOAA Ship Rainier completes hydrographic surveys in Southeast Alaska

By Ensign Airlie Pickett

In early June of this year, NOAA Ship Rainier headed up the inside passage to Southeast Alaska to conduct hydrographic survey operations in two project areas. The first, Tracy Arm Fjord, is located in the Tongass National Forest and is home to a number of glaciers making it a popular destination for tourists and the cruise ships and sightseeing vessels that carry them. From 2014-2015, a little over two million out-of-state visitors traveled to Alaska, bringing over $4 billion and 39,700 jobs to the state. Nearly half of those visitors arrived via cruise ships (Alaska Department of Commerce, Community, and Economic Development, 2016).

rainier1
Location of Tracy Arm Fjord and Lisianski Inlet in Southeast Alaska.
rainier2
Bathymetric data collected by Rainier in Tracy Arm Fjord.

The area was last surveyed in 1974 using only partial-bottom coverage techniques. Since then, technology has improved vastly and complete bottom coverage is now possible. Rainier and her five survey launches are equipped with multibeam echo sounders, which provide a much greater density of soundings, from which a highly detailed 3-dimensional surface can be created.

At the far ends of the Tracy Arm Fjord are two glaciers, the Sawyer Glacier and the South Sawyer Glacier. Satellite imagery (and in-person investigations) reveal that over the past few decades the glaciers have receded significantly, leaving a large area of completely unsurveyed water directly preceding the glaciers.

rainier3
Previously unsurveyed area overlaid with an image of Rainier’s newly gathered hydrographic data. At the Sawyer Glacier (left), Rainier collected new hydrographic data approximately .75 miles past the previously surveyed area, and at the South Sawyer Glacier (right), she sailed a full mile into uncharted territory.

The survey was conducted in early summer, and the warm weather made itself known. Both glaciers began to calve in earnest and strong glacial currents and prolific icebergs made this survey operationally challenging. In addition, the high canyon walls of the fjord impeded communications, making it difficult for the ship and her survey launches to maintain contact.

rainier4
Two of Rainier’s launches operating in the iceberg laden waters of Tracy Arm Fjord. Credit: Amanda Finn, Survey Technician, NOAA

The data collected from this survey will also be used by glaciologists, providing a highly detailed 3-dimensional view of the path taken by the glacier as it receded. Rainier’s data reveals ridges across the seabed at several points along the fjord.  These features, called moraines, are formed where glacier recession stopped for a period of time.

rainier5
A well-defined moraine located just before the junction between the two arms on the east side of the fjord.

 

rainier6
Rainier in front of the South Sawyer Glacier. Credit: Ensign Collin Walker, NOAA

The second survey completed by Rainier during this time was in Lisianski Inlet, home to the town of Pelican, population: 88. Lisianski Inlet is a popular location for recreational boaters and yachts as well as being an important route of the Alaska Marine Highway ferry system. The area was last surveyed in 1917 using lead lines. Rainier’s full-bottom coverage using multibeam sonar will greatly enhance the accuracy of local charts and assist local mariners in safe navigation.

rainier7
Bathymetric data collected by Rainier in Lisianski Inlet.
rainier8
One of Rainier’s Survey launches underway in Lisianski Inlet. Credit: Amanda Finn, Survey Technician, NOAA

 

NOAA positions hydrographic survey assets in Hawaii in preparation for Hurricane Lane

As Hurricane Lane approaches the Hawaiian Islands as a Category 4 storm with wind gusts reaching 150 mph in some locations, NOAA is prestaging personnel and hydrographic survey assets to help speed the resumption of shipping post storm.

According to a recent news release from the office of Governor David Ige of Hawaii, the state is in the process of closing commercial harbors. Gov. Ige states, “This is important because the harbors are our lifeline to essentials such as food and products. We must protect the harbors and piers so that shipping operations can resume once the storm has passed.”

Projected path of Hurricane Lane as seen in nowCOAST™
Projected path of Hurricane Lane as seen in nowCOAST™ as of early afternoon (EDT) August 23, 2018.

Coast Survey mobilizes survey teams to search for underwater debris and shoaling after hurricanes, to speed the resumption of ocean-going commerce. In this case, since navigation response team (NRT) vessels are unable to reach Hawaii, NOAA’s mobile integrated survey team (MIST) is traveling to Oahu with survey equipment in tow. Comprised of hydrographic survey experts with experience in rapid emergency response, the MIST can quickly install a sonar kit on a “vessel of opportunity” and be out on the water as soon as practicable. For the first time, the team will be using a new multibeam echo sounder kit, adding to the traditional arsenal of side scan and singlebeam sonars. This new capability will allow the MIST to provide high resolution depth information throughout the survey area.

As seen most recently in response to hurricanes Harvey, Irma, and Maria, the team’s flexibility allows them to quickly respond in waterways where the U.S. Coast Guard needs them most. For Hurricane Lane response, the MIST members include Mike Annis, NOAA scientist and lead of NOAA’s MIST; Erin Diurba, team member of NRT Galveston, Texas; Lt. j.g. Dylan Kosten, officer in charge of NRT New London, Connecticut; and Michael Bloom, team member of NRT New London.

Mike Annis (right), NOAA scientist and lead of NOAA’s Mobile Integrated Survey Team (MIST), and LCDR Jonathan French, mount side scan sonar on a Coast Guard vessel in Key West.
NOAA MIST will install hydrographic survey equipment on a “vessel of opportunity” in Hawaii similar to their project in Key West, Florida, (pictured) when responding to the aftermath of Hurricane Irma in 2017. Mike Annis (right) and Lt. Cmdr. Jonathan French (left) mount a side scan sonar on a Coast Guard vessel.

NOAA’s northwest and Pacific Islands regional navigation manager, Crescent Moegling, is currently embedded within the U.S. Coast Guard Sector Honolulu Marine Transportation System Recovery Unit (MTSRU) and working with Coast Guard District 14, the U.S. Army Corps of Engineers, and the Department of Transportation Harbors. She will be assisting with port survey prioritization and providing information on the status of NOAA’s survey assets and their readiness. As soon as the Coast Guard can assess where survey response is needed most, the NOAA team will deploy.

NOAA and Coast Guard survey shallow channels in eastern Chesapeake Bay to update aids to navigation

By Lt j.g. Patrick Debroisse

The area of the Chesapeake Bay along the Eastern Shore of Maryland is one of our nation’s treasures. Home to unique underwater grasses, fish, and shellfish, this complex transition from river to sea is also home to millions of tons of sediment delivered annually from eroding land and streams. Recreational boaters, fisherman, and cruising vessels are keenly aware of the shifting sands and sediment deposits in these shallow waters and rely on aids to navigation (ATON) — a system of beacons and buoys — to travel safely to and from the harbors and docks along the shoreline.

U.S. Coast Guard (USCG) Aids to Navigation Team (ANT) from Crisfield, Maryland, recently requested the assistance of NOAA’s Office of Coast Survey to help identify areas where ATON were in need of repair, relocation, or removal due to the shifting sediment of these nearshore areas. Crew from NOAA research vessel Bay Hydro II and from navigation response team (NRT) 1 (homeported in Stennis, Mississippi) operated an Echoboat autonomous surface vehicle (ASV) from a USCG vessel to survey these shallow waters. 

Lt j.g. Patrick Debroisse readies the Echoboat ASV for hydrographic survey
Lt j.g. Patrick Debroisse (NOAA, junior officer in charge, Bay Hydro II) readies the Echoboat ASV for hydrographic survey in the nearshore waters of the Chesapeake Bay.
Alex Ligon (NOAA NRT1) works with USCG Boatswain Mate (BM) 1 Lee Durfee, BM2 Collin Blugis, and Machinery Technician 3 Matt Kemp to load the ASV on the USCG vessel.
Alex Ligon (NOAA, NRT 1) works with USCG Boatswain Mate (BM) 1 Lee Durfee, BM 2 Collin Blugis, and Machinery Technician 3 Matt Kemp to load the ASV on the USCG vessel.

The team first visited Slaughter Creek, near Taylor’s Island, where the USCG believed sediment in the channel was shifting, requiring potential ATON relocation. The second area was in Pocomoke River, east of Smith Island, where shoaling in the already shallow channel was of concern, as well as the existence of unused ATON anchors. The ASV, equipped with side scan sonar to search for underwater objects, and a multibeam echo sounder to check the contours of the channels, surveyed both areas.

Once the survey data is processed and delivered to the USCG ANT, they can make informed decisions about ATON maintenance. Finding old ATON anchors and recycling them back into service is a potential cost savings for the USCG. NOAA and the USCG plan to operate the Echoboat ASV in this area again, surveying the waters for a possible wreck in Fishing Bay and for old ATON moorings replaced by a day shape.

Echoboat ASV surveys in the Pocomoke River Channel to investigate possible shoaling.
Echoboat ASV surveys in the Pocomoke River channel to investigate possible shoaling.
Alex Ligon (NOAA NRT 1) watches the ASV data in real-time. The ability to watch the data real time allows real-time decision making for survey planning and preliminary products to be provided to the Coast Guard ANT.
Alex Ligon (NOAA, NRT 1) watches the ASV data in real-time, which allows for real-time decision making for survey planning and preliminary products.

Coast Survey recently surveyed the waters of Lake Champlain using the Echoboat ASV.  This portable unit provides flexibility and allows survey teams to further develop procedures and to train more individuals in its use for future operations around the country.