New NOAA precision navigation program increases safety, efficiency for maritime commerce

By Capt. Liz Kretovic, Deputy Hydrographer of the Office of Coast Survey

Nowadays, many cars have sensors, video cameras, and other technology installed to help drivers park in tight spaces. Now imagine you are trying to parallel park a tractor-trailer on an icy hill, against a strong crosswind, with millions of dollars of products that depend on your precise execution. Dynamic conditions, tight spaces, and high stakes are exactly the scenario that many commercial vessels face as they move 95 percent of the United States’ foreign trade in and out of U.S. ports and waterways. In a manner comparable to the way car technology supports drivers, NOAA has launched a new program to develop the next generation of marine navigation tools that provide mariners with the information they need to safely and efficiently transport maritime commerce. This next generation of products is referred to as precision navigation.

Mariners face complex decisions as ever-larger vessels make their way through congested U.S. ports.
Mariners face complex decisions as ever-larger vessels make their way through congested U.S. ports.

Precision navigation seamlessly integrates high-resolution bathymetry with real-time and forecast data—such as water levels, currents, salinity, temperature, and precipitation—to produce a stronger decision support tool. As a result, mariners are better equipped to make critical go/no-go decisions. Since precision navigation involves many types and sources of data, it is a well coordinated effort across several NOAA offices, including the Office of Coast Survey, the Center for Operational Oceanographic Products and Services, the National Geodetic Service, the U.S. Integrated Ocean Observing System, and the National Weather Service.

This year, NOAA offices involved with precision navigation were awarded additional funding to support foundational program management, and have established a dedicated team that will support the expansion of precision navigation to more ports throughout the country in the coming years. The precision navigation program team includes a program manager, requirements coordinator, and dissemination manager, as well as members from the other involved NOAA offices. In addition, the funding will support a socio-economic study that will look at the return on investment of the precision navigation program and fund a developer to work on the dissemination of NOAA’s data with private industries. Plans are underway to implement precision navigation in the Lower Mississippi River Port Complex as well as in the Port of New York/New Jersey. The program is currently developing a stakeholder engagement strategy to determine needs that can be addressed by precision navigation in these ports.

These new initiatives build on the success of a demonstration project in the Port of Los Angeles/Long Beach, where NOAA and its partners created high resolution depth maps and improved wave prediction, and combined them with water levels from the Physical Oceanographic Real-Time System (PORTS®).  The improved services, integrated into commercial navigation software packages, allowed the port to increase the maximum draft of tankers from 65 feet to 69 feet. Each extra foot of draft translates to an additional $2 million of product per tanker transit. In addition, the increased draft allowance decreased lightering, which saves shippers an estimated $10 million per year. Expanding precision navigation to other high volume ports will reap additional economic benefits for the nation. Private industry beneficiaries of precision navigation include sectors such as the oil and gas industry, port authorities, shipping, fisheries, agriculture, and intermodal transportation networks.

The new NOAA program highlights the importance of public-private partnerships in improving the U.S. maritime transportation system. Precision navigation greatly improves safety and efficiency within the maritime community by reducing the risk of collisions and groundings while allowing vessels carry more goods in a single transit, which means fewer total trips. These benefits to maritime safety, the environment, and the economy will continue to grow as the precision navigation program brings this decision support tool to more ports around the country.

NOAA makes forecast data easier to display in marine navigation systems

By, Neil Weston, Office of Coast Survey Technical Director

Have you ever been on the water when weather and sea conditions suddenly change? As mariners can attest, decisions need to be made quickly. Many rely on NOAA operational forecast system (OFS) data—a national network of nowcast and forecast models—to make decisions about their situation on the water. NOAA OFS are available to the mariner as data streams through a variety of websites, including nowCOAST™. However, only recently has OFS data been viewable on marine navigation systems, making it even more convenient for those needing to make critical decisions on the water.

Rose Point’s Coastal Explorer displays NOAA surface current data.
Rose Point’s Coastal Explorer, one example of many navigation software packages available, displays NOAA surface current data.

NOAA’s Office of Coast Survey recently started producing OFS data in formats that are easily ingested by marine navigation systems, such as Electronic Chart Display and Information Systems (ECDIS), portable pilot units (PPU), and electronic charting systems (ECS). These data not only have the potential to display nowcasts and forecasts in real-time on navigation system displays, but can also optimize route planning for commercial ships. Ultimately, these model forecast data will be available for machine-to-machine exchange, with data file sizes small enough to enable delivery from shore to vessel over existing communication and data networks.

Nowcasts and forecasts are scientific predictions about the present and near future state of a coastal marine environment including water levels, currents, salinity, and sea surface temperature for many coastal regions. OFS are national networks of operational nowcast and forecast models that consist of automated integration of observing system data, hydrodynamic model predictions, product dissemination, and continuous quality control monitoring. These versatile systems can be used for a variety of activities such as search and rescue, recreational boating, fishing, and storm effect tracking.

Seapilot Navigation computes the optimized route from start to finish via any waypoints, considering wind, current, land, shallow water and the properties of the boat.
Seapilot Navigation computes the optimized route from start to finish via any waypoints, considering wind, current, land, shallow water and the properties of the boat. This system also displays NOAA OFS data (surface currents).

Initially, the Coast Survey converted surface current data for several OFS regions from a format primarily used by scientists (netCDF), to a format more widely used in meteorology (GRIB 1 & 2). A parallel developmental effort is underway to include conversion of netCDF data to an internationally recognized format (HDF5) adopted by the International Hydrographic Organization (IHO). Within the IHO, many product specifications, including tides, water levels, and currents, are developed using HDF5 encoding. The goal is to produce products and services that comply to internationally accepted standards such as those adopted by the IHO. Compliance with these standards increases data interoperability, allowing navigation platforms to easily ingest and display the data. Coast Survey plans to disseminate OFS data in the HDF5 format by the end of 2018.

Any mention of a commercial product is for informational purposes and does not constitute an endorsement by the U.S. Government or any of its employees or contractors.

NOAA mobile integrated survey team prepares for hurricane season

NOAA’s Office of Coast Survey is the federal leader in emergency hydrographic response. Consecutive strong storms during the 2017 hurricane season made response efforts challenging, and emphasized the importance of having a well-trained and versatile staff. Coast Survey’s regional navigation managers, navigation response teams (NRTs), and mobile integrated survey team (MIST) worked with partners before and after the storms to quickly and safely reopen ports and waterways.

The MIST equipment is a mobile, quick-install side scan and single beam sonar kit that can be quickly set up on a vessel of opportunity. Recently, Coast Survey sent the MIST team to Astoria, Oregon to conduct a hydrographic survey of the Mott Basin area, which the U.S. Coast Guard (USCG) requested to confirm charted depth and obstruction data.

The MIST group used this as an opportunity to give NRTs experience with setup, usage, and tear down of MIST equipment, as well as to perform a system test prior to the upcoming hurricane season.

Data collection in the Mott Basin aboard the USCG Trailerable Aids to Navigation Boat (TANB) vessel
Data collection in the Mott Basin aboard the USCG Trailerable Aids to Navigation Boat (TANB) vessel

The team installed and integrated the MIST equipment on a USCG Trailerable Aids to Navigation Boat (TANB) vessel. TANB vessels are normally used for navigation aid maintenance, but can serve as a vessel of opportunity for hydrographic surveys using MIST equipment. During the 2017 hurricane season, NOAA used USCG vessels of opportunity in Florida and Puerto Rico for rapid hydrographic survey response.

Setting up the MIST equipment on a USCG TANB vessel
Setting up the MIST equipment on a USCG TANB vessel

The deployment to Mott Basin in not only provided USCG with hydrographic data to meet their operational mission, but also allowed NOAA to exercise equipment that will be critical to any upcoming storm or emergency response.

The MIST and USCG survey crew. Tim Wilkinson (NRT3, far left),Erin Diurba (NRT4, second from left), Alex Ligon (NRT1, second from right) and Mike Annis (HQ, far right) represented Coast Survey.
The MIST and USCG survey crew. Tim Wilkinson (NRT3, far left), Erin Diurba (NRT4, second from left), Alex Ligon (NRT1, second from right) and Mike Annis (HQ, far right) represented Coast Survey.

Coast Survey’s NRTs conduct hydrographic surveys to update NOAA’s suite of nautical charts. The teams are strategically located around the country and remain on call to respond to emergencies speeding the resumption of shipping after storms, and protecting life and property from underwater dangers to navigation.

NOAA releases documentary on women’s service in the NOAA Corps

As Women’s History Month draws to a close, NOAA announces the release of Women of the NOAA Corps: Reflections from Sea and Sky, a documentary that highlights the important role women play in the NOAA Commissioned Officer Corps.

Women of the NOAA Corps is a 31-minute historical documentary on the lives and stories of ten women in the NOAA Corps service: how they came to the NOAA Corps, their motivations and challenges, and views on their service.

The documentary serves to elevate public understanding and appreciation of the NOAA Corps, particularly women’s service in the Corps, and to inspire the next generation of women in scientific service. The NOAA Corps is one of seven federal uniformed services of the United States, and NOAA Corps officers serve on the sea, on land, and in the air to support NOAA’s environmental science and stewardship mission.

The project was funded through the 2016 NOAA Preserve America Initiative Internal Funding Program.

Rear Adm. Harley Nygren (NOAA ret.) and Cmdr. Pam Chelgren-Koterba (NOAA ret.). Nygren was the first director of the NOAA Corps and penned entry for women to serve. Chelgren was the first woman to join the NOAA Corps in 1972, under Nygren’s leadership.
Rear Adm. Harley Nygren (NOAA ret.) and Cmdr. Pam Chelgren-Koterba (NOAA ret.). Nygren was the first director of the NOAA Corps and penned entry for women to serve. Chelgren was the first woman to join the NOAA Corps in 1972, under Nygren’s leadership.
The production team interviewed two film subjects on location at the Aviation Operation Center in Tampa, Florida. (Left to right) Bob Schwartz (NOAA Office of Communications), Crescent Moegling (Co-Producer; NOAA Office of Coast Survey), Lt. j.g. Shanae Coker (NOAA Corps), Timi Vann (Producer; National Weather Service), and Cmdr. Cathy Martin (NOAA Corps). The team also included Lt. Cmdr. Fionna Matheson as a technical advisor and worked under the leadership endorsement of Rear Adm. Anita Lopez (NOAA ret.).
The production team interviewed two film subjects on location at the Aviation Operation Center in Tampa, Florida. (Left to right) Bob Schwartz (NOAA Office of Communications), Crescent Moegling (Co-Producer; NOAA Office of Coast Survey), Lt. j.g. Shanae Coker (NOAA Corps), Timi Vann (Producer; National Weather Service), and Cmdr. Cathy Martin (NOAA Corps). The team also included Lt. Cmdr. Fionna Matheson as a technical adviser and worked under the leadership endorsement of Rear Adm. Anita Lopez (NOAA ret.).

NOAA navigation response team investigates hazardous shoal off Rockaway Point, NY

Recently, NOAA navigation response team 5 (NRT5), responded to a survey request from U.S. Coast Guard (USCG) Sector New York following several groundings near Rockaway Point in Queens, New York. Waves and currents often influence the size and shape of nearshore sandbars, and the USCG was concerned that a sandbar may have expanded beyond the area depicted on the nautical chart. Lt. j.g. Dylan Kosten, Eli Smith, and Michael Bloom traveled from New London, Connecticut, to Jersey City, New Jersey, to launch their vessel and start the survey of the area.

NRT5’s survey area around the large sandbar off Rockaway Point.
NRT5’s survey area around the large sandbar off Rockaway Point.

The location of the shoal and characteristics of the sandbar created challenging conditions for the survey team. In addition, the crew was asked to survey at a tighter contour (6-foot) than the standard 4-meter (13.1-foot) contour so that they could more clearly define the boundaries of the shoal. To fulfill this requirement, the crew of NRT5 took strong precautions to mitigate risks associated with surveying in shallow water with breaking waves and strong currents, and closely monitored conditions for changes throughout the day.

The shoal, located off Rockaway Point at the northern end of Raritan Bay, is exposed to both open ocean swells and strong tidal currents (left image, from surveyed area). The interaction of tides, currents, and waves surrounding the shoal produce rolling breakers (right photo). Wave energy stirs up the sediment and suspends large volumes of sand in the water column. Wave energy fluctuates as the tide ebbs and flows, and sand is washed away and deposited elsewhere – in this case, it formed a mostly permanent sand bar off of Rockaway Point.
The shoal, located off Rockaway Point at the northern end of Raritan Bay, is exposed to both open ocean swells and strong tidal currents (left image, from surveyed area). The interaction of tides, currents, and waves surrounding the shoal produce rolling breakers (right photo). Wave energy stirs up the sediment and suspends large volumes of sand in the water column. Wave energy fluctuates as the tide ebbs and flows, and sand is washed away and deposited elsewhere – in this case, it formed a mostly permanent sandbar off of Rockaway Point.

Conditions changed quickly. The northeast experienced unseasonably warm temperatures, and a thick blanket of fog engulfed New York Harbor as the warm air met the cold water of the ocean, harbors, and bays. With weather conditions thought to be better outside of the harbor and to likely improve later in the morning, the team cautiously transited to the project area and found conditions were indeed much more favorable.

Lt. j.g. Dylan Kosten keeping a steady watch through the thick fog.
Lt. j.g. Dylan Kosten keeping a steady watch through the thick fog.

Despite the challenges, NRT5 successfully completed the survey of the area by the end of the week. While the 6-foot contour was not reached in all areas due to breaking waves, the data was interpolated to that scale using lines of data run across the shoal in between wave sets. NRT5 has processed and analyzed the acquired data and Coast Survey will use it to create products to improve the resolution of the charted shoal and prevent future incidents.

During NRT5’s responses in areas surrounding the New York Harbor, the USCG Aids to Navigation Team (ANT) in Bayonne, New Jersey, offered the team a spot to dock their vessel at the end of the day. This sheltered station provided safety from poor weather conditions and allowed the team to quickly transit to project areas. Here, NOAA survey vessel S3007 is moored alongside at the USCG station.
During NRT5’s responses in areas surrounding the New York Harbor, the USCG Aids to Navigation Team (ANT) in Bayonne, New Jersey, offered the team a spot to dock their vessel at the end of the day. This sheltered station provided safety from poor weather conditions and allowed the team to quickly transit to project areas. Here, NOAA survey vessel S3007 is moored alongside at the USCG station.
Survey data coverage acquired around the sandbar. The black line marks the 12-foot depth contour and the red dashed line marks the interpolated 6-foot depth contour. The wreck symbols indicate where vessel groundings occurred in the weeks prior to this survey.
Survey data coverage acquired around the sandbar. The black line marks the 12-foot depth contour and the red dashed line marks the interpolated 6-foot depth contour. The wreck symbols indicate where vessel groundings occurred in the weeks prior to this survey.

Coast Survey’s NRTs conduct hydrographic surveys to update NOAA’s suite of nautical charts. The teams are strategically located around the country and remain on call to respond to emergencies speeding the resumption of shipping after storms, and protecting life and property from underwater dangers to navigation. NRT5 team members contributed the content of this story.

NOAA ships Fairweather and Rainier mark 50 years of service and survey

 

NOAA ships Rainier and Fairweather.
NOAA ships Rainier (left) and Fairweather (right) alongside at Marine Operations Center – Pacific in Newport, Oregon.

To recognize the successful history of NOAA ships Fairweather and Rainier, as well as the professional mariners, hydrographers, and commissioned officers who have served aboard these ships for the last 50 years, NOAA hosted a ceremony and public ship tours at the Marine Operations Center – Pacific (MOC-P) in Newport, Oregon.

The ceremony opened with the national anthem sung by Ensign Airlie Picket and HAST Amanda Finn. Capt. Keith Roberts, commanding officer, Marine Operations Center – Pacific, served as master of ceremonies introducing Representative David Gomberg, District 10 – Central Coast Oregon State Legislature, Rear Adm. Shep Smith, director, Office of Coast Survey, and Rear Adm. Nancy Hann, deputy director, Office of Marine and Aviation Operations and NOAA Corps, who all gave remarks during the ceremony.

“Today we are here to recognize a milestone in the career of the Rainier and Fairweather, who turn 50 this year.  They are the last of a generation of truly beautiful ships,” said Rear Adm. Shep Smith. “The passion, dedication, and craftsmanship of generations of engineers and deck force have kept these ships operable for 50 years and this is no small feat.”

groupphoto-blog
Past and present crew of NOAA ships Fairweather and Rainier.

Rear Adm. Hann provided comments on the hydrographic fleet’s contribution to the national economy and the importance of investing in the future of NOAA’s fleet. “There is recognition in the value of the work that the crew of the Rainier, Fairweather, and the entire NOAA fleet provides to the nation.”

NOAA Teacher at  Sea Alumni Association presented plaques honoring the ships to their commanding officers, Cmdr. Mark Van Waes and Cmdr. Ben Evans. The ceremony closed with the commanding officers of both ships directing inspirational words to their crews.

NOAA Teacher at Sea Alumnus Lisa Battig presents a plaque honoring NOAA Ship Fairweather to Cmdr. Mark Van Waes, commanding officer of the ship (left). NOAA Teacher at Sea Alumnus Denise Harrington presents a plaque honoring NOAA Ship Rainier to Cmdr. Ben Evans, commanding officer of the ship (right).
NOAA Teacher at Sea Alumnus Lisa Battig presents a plaque honoring NOAA Ship Fairweather to Cmdr. Mark Van Waes, commanding officer of the ship (left). NOAA Teacher at Sea Alumnus Denise Harrington presents a plaque honoring NOAA Ship Rainier to Cmdr. Ben Evans, commanding officer of the ship (right).

Following the ceremony, NOAA hosted over 400 members of the public on ship tours and tours of the MOC-P museum, a collection that features several of NOAA’s heritage assets. Visitors had the opportunity to board the ships, speak with the crew, and explore one of the many launches (small boats) that the ships deploy to conduct hydrographic survey operations.

ENS Airlie Picket shows visitors how to map the seafloor using sounding boxes.
Ensign Airlie Picket shows visitors how to map the seafloor using sounding boxes.
NOAA Ship Rainier and visitors.
Visitors of all ages toured NOAA ships Rainier and Fairweather during the open house at MOC-P.

Both ships, along with their sister ship, Mt. Mitchell, were constructed at the Jacksonville Shipyards in Florida and later christened in March of 1967. Following hydrographic tradition, the ships were named for features near their working grounds—Alaska’s Mt. Fairweather, Washington’s Mt. Rainier, and North Carolina’s Mt. Mitchell. The U.S. Coast & Geodetic Survey commissioned the Fairweather and Rainier in October of 1968 at the Pacific Marine Center in Seattle. Mt. Mitchell was launched one year earlier and, though no longer commissioned with NOAA, is still operating as a privately-owned research vessel.

NOAA ships Fairweather, Rainier, and Mt. Mitchell under construction.
NOAA ships Fairweather, Rainier, and Mt. Mitchell were built in the Jacksonville Shipyard in Florida.

 

NOAA Ships Fairweather and Rainier .
NOAA Ships Fairweather and Rainier were christened in Jacksonville, Florida, in March, 1967.

The NOAA ships are operated and maintained by the Office of Marine and Aviation Operations, with hydrographic survey projects managed by the Office of Coast Survey. NOAA thanks the U.S. Coast and Geodetic Heritage Society and the National Marine Sanctuary Foundation for their support of this event.

NOAA Ship Fairweather uses new technology to improve survey efficiency

By ENS Peter Siegenthaler

Following the scheduled winter repair period, Fairweather is kicking off the 2017 field season in Tlevak Strait; the waterway between Dall Island and Prince of Wales Island in Southeast Alaska. This area was last surveyed between 1900 and 1939, and the lead-lines used at the time to determine depths were susceptible to omission of rocks and other features in an area. Using the latest innovations in hydrographic technology, Fairweather will be resurveying these areas with complete coverage multibeam echo sounder bathymetry. This allows Fairweather to identify any rocks or shoal features missed in prior surveys, increasing the safety for local communities, whose economies and livelihoods are dependent on maritime transportation of goods.

One of the new developments Fairweather’s survey department in particular is excited about is a new software program affectionately named “Charlene.” Charlene was developed by PS Eric Younkin at Coast Survey’s Hydrographic Systems and Technologies Branch (HSTB) to automate the night processing workflow. This simplifies hours spent each night converting and correcting raw sonar data into an automated script which takes in raw data at one end and generates products at the other. Initial results are promising, and the ship is looking forward to fully integrating Charlene into the processing workflow.

Another new development for the 2017 field season is new multibeam sonars for the ship’s survey launches, which were installed during the winter repair period. The preliminary data acquired by these sonars has shown vast improvement over their predecessors’ data, which will go a long way towards reducing data processing timelines. The new sonars do this by automating most of the acquisition parameters in real-time, far faster and more effectively than could be achieved manually. They also take advantage of a multitude of hardware and software advances that have taken place over the past several years, resulting in systems that are quieter, smaller, and easier to operate.

Fairweather is continuing to use and develop the launch-mounted lidar systems (lasers) for the acquisition of shoreline data. This was another HSTB-developed process that was validated during the 2016 field season. This year, Fairweather is using those lessons learned in order to further improve our acquisition workflow. These systems create accurate real-time point clouds of features above the waterline and have revolutionized the way hazards to navigation are documented. Before the use of lasers, shoreline verification frequently required physically touching rocks and obstructions above the water surface for accurate measurement and placement. This process involved increased risk, took more time, and produced less accurate data. The new laser workflow addresses all these limitations. By scanning the shoreline at a distance with calibrated equipment, efficiency, accuracy, and safety are all greatly improved.

Overall, Fairweather is enthusiastic about being back at work in Alaska. With her new software, sonar systems, and dedicated crew, the stage is set for and productive field season!

Area surveyed by Fairweather May 30- June 10, 2017.
Area surveyed by Fairweather May 30- June 10, 2017.