Upgrading Great Lakes operational forecast systems   Leave a comment

by Thomas Loeper, Coast Survey navigation manager for the Great Lakes

Have you ever wondered how scientists make short-term forecast water levels, currents, and water temperature for the Great Lakes? They use the National Ocean Service’s operational forecast systems. There are now five different computer forecast modeling systems running for the Great Lakes — one for each lake. The forecast guidance from these forecast systems supports a variety of activities, including environmental management, emergency response for incidents like hazardous materials spills, homeland security, and search and rescue, as well as safe and efficient navigation of recreational and commercial vessels along the entire Great Lakes system.

The current operational forecast systems have been operational since 2005/2006, and Coast Survey is planning upgrades in the coming years. The original forecast systems were developed in the early 1990s as a collaborative effort between NOAA’s National Ocean Service, the Great Lakes Environmental Research Laboratory, the National Weather Service, and the Ohio State University. They were the first civilian coastal ocean systems to produce regularly scheduled predictions for the U.S.

The new forecast systems will have double the forecast horizon, from 60 to 120 hours, and provide higher horizontal and vertical resolution predictions.


Model inputs include currents, winds, and temperatures

The inputs to the forecast systems include atmospheric forecasts and observations such as surface winds, cloud cover, air temperature, and dew point temperature, along with water levels, water temperatures, and tributary flows along its grid boundaries. To model the lake, scientists use an unstructured 3-D grid of points that extend from the surface to the bottom of the lake. The grid provides more detail in areas of great concern, i.e., in harbors or in chokepoints like the Straits of Mackinac between Lake Michigan and Lake Huron. NOAA feeds this information into a 3-D oceanographic circulation model to generate the forecast guidance.


Lakes Michigan and Huron operational forecast system grid detail in the Straits of Mackinac

Upgrades to the Great Lakes operational forecast systems

First, NOAA will update the forecast system for Lake Erie. The Lake Erie Operational Forecast System is expected to be operational by March 2016. By 2017, the upgraded system will help scientists forecast harmful algal bloom. Additionally, NOAA is developing an ice module to incorporate into the forecast systems for all the Great Lakes.


Upgraded Lake Erie operational forecast system grid with horizonal spacing from 400m to 3.5km

Second, we are developing a new combined forecast system: the Lakes Michigan and Huron Operational Forecast System. This model upgrade combines both lakes since they act — hydraulically — as one giant lake, essentially forming the largest lake in the world by surface area. This system is scheduled for operations sometime in 2018.

Nowcast/forecast graphics are available as map views from the Center for Operational Oceanographic Products and Services (CO-OPS) Operational Forecast System site. To view real-time and forecast conditions as web map services, use the recently upgraded nowCOAST. NowCOAST is a GIS-based webmap service providing more frequently updated observations for coastal and Great Lakes regions along with coastal and marine weather forecasts now available 24 hours a day.


nowCOAST image of surface water currents prediction from Lake Erie operational forecast system

Posted December 11, 2015 by NOAA Office of Coast Survey in Nautical charts

NOAA National Ocean Service honors Coast Survey employees   1 comment

NOAA’s National Ocean Service had a ceremony for its honorees for 2015, and we are so pleased that several Coast Survey employees were recognized for their contributions.

Glang Fleisher Peeri Ries Ward Lanerolle

From left, Rear Admiral Gerd Glang and Coast Survey awardees: Teresa Fleisher, Shachak Pe’eri, Katie Ries, Kyle Ward, and Lyon Lanerolle

Congratulations to deputy director Katie Ries, who was selected as a 2015 Employee of the Year! This award recognizes significant contributions to NOS programs and the demonstration of exceptional and sustained effort toward the accomplishment of NOS missions. Katie is being honored for many things, chief among them “for being the indefatigable force driving Coast Survey’s crucial improvements in quality management, strategic planning, and employee support.”

Congratulations to Lyon Lanerolle (Coast Survey Development Lab) and Kyle Ward (Navigation Services Division, Southeast navigation manager). They both received a NOS Rafting Award, which recognizes coordination among NOS offices and provides NOS employees the opportunity to express their appreciation to another NOS or NOAA colleague who has helped them in some unique way.

  • The National Centers for Coastal Ocean Science nominated Lyon for working with the NCCOS/Oxford Lab and the National Weather Service’s Ocean Prediction Center to enable the use of Coast Survey-developed Operational Forecast Systems data to predict the probability of pathogens in various U.S. bays and estuaries.
  • The Office of Coastal Management nominated Kyle for his collaboration on ocean mapping projects. The nomination explained that Kyle “has a positive, can-do attitude and is always willing to extend his role as navigation manager,” citing (among other collaborative projects) his willingness to use his AIS expertise for offshore renewable energy projects, his collaboration on establishing new and safer anchorage areas, and his assistance in standing up web map services for regional marine planning.

Congratulations to Shachak Pe’eri (research associate professor at Center for Coastal & Ocean Mapping University of New Hampshire) and Teresa Fleisher (Coast Survey Development Lab, administrative assistant), who were selected as NOS Team Members of the Year. This award is presented to members of the workforce who are not NOAA federal employees, for their contributions as recognized by their NOS peers.

  • Teresa is recognized for her outstanding achievement in assisting with Coast Survey’s property management. “Teresa went far above the usual effort to help ensure that the inventory was up-to-date and correct, with all items found… Her efforts helped free up additional office space and resources that would not have been available otherwise.”
  • Professor Pe’eri is honored for his development of innovative techniques and policies in the use of satellite-derived bathymetry to analyze nautical chart adequacy and the remote determination of water depth for updating NOAA nautical charts; in particular his methods for integrating SDB into Coast Survey’s chart production process.

Posted December 1, 2015 by NOAA Office of Coast Survey in Awards, Nautical charts

NOAA begins multiyear project to update Hudson River charts   4 comments

NOAA sets charting priorities by considering a range of factors. Some of the most important factors include requests by the maritime industry. So when the Hudson River Pilots asked a Coast Survey navigation manager to accompany them on a transit down the Hudson River for a first-hand look at the problems caused by out-of-date soundings, our Northeast navigation manager jumped at the opportunity. Coast Survey understood the pilots’ concerns, especially since the charts in areas outside the federal channel have not been surveyed since 1939, and in some areas the soundings are pre-1900.

MeghanMcGovern w CAPT Scott Ireland - Hudson River Pilot

Lt. Cmdr. Meghan McGovern, NOAA navigation manager for the Northeast, rode with Capt. Scott Ireland on a salt ship down the the Hudson River in October 2014, learning about the concerns of the Hudson River Pilots.

Late this last summer, Coast Survey started a multi-year effort to update the nautical charts of the Hudson River. The project, which involves collecting new hydrographic data and creating larger scale electronic navigational charts, began with an initial survey by one of Coast Survey’s navigation response teams, from August 14 to September 10.

The graphics below display the areas surveyed by NOAA’s Navigation Response Team 5 in August and September, 2015. The red color indicates where the team surveyed.

Hudson River_chart12347

Hudson River_chart12348

The age of the data on the Hudson River charts is, unfortunately, not a rare instance. If you examine any one of our 1000+ charts, you may find depths that originated from pre-1920 lead line and sextant surveys; some have been measured with single beam echo sounders, while others were measured by state-of-the-art multibeam echo sounders. You may find all of this information on a single chart, and it is a challenge that NOAA faces with many charts covering the 95,000 nautical miles of U.S. coastline.

Rear Adm. Gerd Glang, Coast Survey director, recently informed Capt. Ireland of our determination to fix the Hudson River charts. We hope to complete data collection by the end of 2017, and to produce larger scale electronic charts by 2019.

Ireland sent his appreciation to Coast Survey.

“I’m very grateful to Rear Admiral Glang and his staff at NOAA for recognizing the importance of accurate soundings on Hudson River,” Ireland wrote on Oct 28.

“The effort to update 75+ year old data began a year ago with a phone call to Lt. Cmdr. Meghan McGovern, NOAA’s Northeast Navigation Manager. Lt. Cmdr. McGovern recognized the problem and moved quickly to help, sending a survey team to ‘spot survey’ some vital areas that will make commercial traffic markedly safer. Her encouragement then led me to lobby NOAA for a full-scale resurvey of the river and a re-scheming of the charts.”

“I recognize that this will be an expensive multiyear effort and applaud NOAA for their decision. When completed, the new soundings and navigational charts will result in a safer river environment for boaters of all sizes.”

“Thanks to all who supported this effort. While long overdue, it seems that the Hudson River now has NOAA’s attention.”

On November 16, U.S. Senator Chuck Schumer (NY) sent a letter to NOAA Administrator Kathryn Sullivan, emphasizing the importance of the project and calling for an immediate update of the charts.

For more information, see the letters exchanged between Capt. Scott Ireland (sent on Sept. 1, 2015) and Rear Adm. Gerd Glang (sent on October 9, 2015).

Posted November 17, 2015 by NOAA Office of Coast Survey in Nautical charts

Change of command for NOAA Ship Ferdinand Hassler   Leave a comment

The crew of the NOAA Ship Ferdinand R. Hassler (S-250) hosted a change of command on November 5, while moored at its homeport in New Castle, New Hampshire.

In front of the crew and guests – including Rear Adm. Gerd Glang, director of the Office of Coast Survey, and Capt. Anne Lynch, commanding officer of the Atlantic Marine Operations Center – Lt. Cmdr. Briana Welton accepted command of Hassler, replacing Cmdr. Marc Moser.

Welton is the new survey ship’s third commanding officer.

Lt. Cmdr. accepts command of NOAA Ship Ferdinand R. Hassler as Cmdr. Marc Moser looks on.

Lt. Cmdr. Briana Welton accepts command of NOAA Ship Ferdinand R. Hassler as Cmdr. Marc Moser (right) looks on. Lt. Jon Andvick, Hassler‘s operations officer, observes from the left.

Glang congratulated Welton on her new responsibilities. “You have proven yourself capable and successful in your previous assignments, and we have great expectations you will continue to succeed at your new command-at-sea,” he said.

A commanding officer of a NOAA survey ship is also the ship’s hydrographer, chief scientist, and senior program representative. This means that, in addition to being responsible for the safe management of the vessel, the ship’s CO is also solely and ultimately responsible for the completion of the science mission: the hydrographic surveys that are delivered to Coast Survey.

The event marked the end of a successful tour for Moser, who served as Hassler’s second commanding officer, beginning in December 2013. Glang commended Moser for his service as “a resilient, resourceful, and extremely competent leader.”

During Moser’s tenure, Hassler achieved significant reductions in survey processing time, which cut an average of 55 days from the time it takes to get newly acquired data on to nautical charts.

Highlighting the importance of working to minimize conflicts with commercial fishing operations during survey projects, Glang thanked Moser for coordinating with the local fishing communities in the Gulf of Maine and adapting survey schedules to try to avoid impacts on fishing operations. Moser also demonstrated his “understanding and commitment to the customs and traditions of a seagoing service, when Hassler intercepted a derelict sailing vessel that had been drifting for three days in the New York Bight,” Glang pointed out. The crew facilitated the vessel’s rescue by the U.S. Coast Guard.

Moser succeeded Cmdr. Ben Evans, who brought Hassler through its delivery and initial shakedown period and into operations – including responses to hurricanes Irene and Sandy. In the Sandy response, Hassler searched for dangers to navigation and sped the resumption of shipping and naval traffic through deep draft routes to the ports of Hampton Roads and Baltimore.

Lt. Cmdr. Briana Welton

Lt. Cmdr. Briana Welton

Welton, who has served as Hassler‘s executive officer since May 2014, congratulated Moser for his successful command, and then went on to “thank everyone here – and those who couldn’t be here, too – who have supported this ship through all the trials and tribulations of transforming a newly constructed ship of unique design to a safe and effective operational ocean mapping vessel.”

Welton received her commission in 2003, and is one of a growing number of females in the NOAA Corps, one of the nation’s seven uniformed services.  Of the total 320 officers, 91 are women. NOAA’s female percentage of 28.4 compares favorably to 14.5 percent of the active-duty military force, and 10.5 percent of the U.S. Coast Guard total force of active-duty and reserve personnel. (See CNN, By the numbers: Women in the U.S. military, January 24, 2013)

NOAA Ship Ferdinand R. Hassler is a small waterplane area twin hull (SWATH) vessel designed for improved stability. Hassler’s officers, technicians, and scientists acquire and process the hydrographic data that NOAA cartographers use to create and update the nation’s nautical charts with ever-increasing data richness and precision.

The ship was named for Ferdinand Rudolph Hassler, a visionary scientist who planned the survey of the coast after President Jefferson signed enacting legislation in 1807. Hassler became the first superintendent of Coast Survey, serving until his death in 1843.

Studying the use of satellite-derived bathymetry as a new survey tool   3 comments

by Ensign Kaitlyn Seberger, onboard NOAA Ship Thomas Jefferson

Nautical charts are an important tool in navigating safely in coastal waters, and Coast Survey’s mission is to keep these charts up to date. However, maintaining accurate charts can be a challenge in locations where sandy shoals may shift seasonally and present a danger to navigation. These areas differ from the current nautical charts, and bottom contours change so rapidly that it may seem an impossible task to keep up using the traditional survey methods. Office of Coast Survey and NOAA Ship Thomas Jefferson are seeking a solution to this ongoing problem and may have an answer with satellite-derived bathymetry.

Satellite-derived bathymetry (SDB) begins with using multi-spectral satellite imagery, obtained by satellites such as Landsat and WorldView2, which compares green and blue color bands.

Multi-spectral satellite imagery of Mutton Shoal in Nantucket Sound, overlaid on the chart.

Multi-spectral satellite imagery of Mutton Shoal in Nantucket Sound, overlaid on the chart.

Green color bands are attenuated by the water faster than blue bands and help to infer relative depths of the water (blue areas being deeper than green). These images are then transformed into a color range scale applicable to the color scale used when surveying with a multibeam echo sounder. With the color range applied, reds on the image represent an area that may be shoal whereas blues and greens represent deeper water.

Satellite-derived bathymetry of Mutton Shoal with a color range scale that is correlated with the color scale used for multibeam processing

Satellite-derived bathymetry of Mutton Shoal with a color range scale that is correlated with the color scale used for multibeam processing.

Since the images are based on attenuation of color bands, depth can only be inferred, so survey equipment (such as vertical beam and multibeam sonars) is necessary to acquire true depth.

This fall, NOAA Ship Thomas Jefferson investigated the use of satellite-derived bathymetry imagery as a new survey tool. Survey technicians will calibrate the application of this imagery through bathymetry studies for Nantucket Sound and Chincoteague Island. NOAA Lt. Anthony Klemm, who is leading the studies, chose these project areas because they both had relatively clear shallow water and were in a highly changeable area. At these locations, he chose specific shoals for exploration based on vessel traffic density.

In October, Thomas Jefferson spent two days in Nantucket Sound researching shifting shoals using the satellite-derived imagery overlain on the most recent chart. Ensign Marybeth Head developed line plans to acquire data over the potential location of shoals as seen with the satellite images, as well as their charted locations. Survey launches acquired multibeam data in water deeper than six feet, and Z-Boats were sent in to acquire vertical beam data in areas too shoal for the launches to safely operate.

The video shows Z-boat surveying alongside the launch in shoals too shallow for the launches to operate safely. (Video credit: ENS Head)

Satellite-derived bathymetry of Mutton Shoal with multibeam data from the investigation overlaid. This picture demonstrates how accurate the location of the shifted shoal was compared to the SDB imagery.

Satellite-derived bathymetry of Mutton Shoal with multibeam data from the investigation overlaid. This picture demonstrates how accurate the location of the shifted shoal was compared to the SDB imagery.

During routine conductivity, temperature, and depth casts for sound speed velocity, Ensign Head and Ensign Kaitlyn Seberger used a Secchi disk to determine the attenuation coefficient at each cast location for later comparisons.

The satellite imagery was a vital tool in project planning, as well as determining safe navigation of the ship and the survey launches. Below is a picture of the chart location where Thomas Jefferson intended to anchor. The adjacent image is the satellite-derived bathymetry imagery indicating the anchorage would have been within a shoal area and unsafe for anchoring.

Side-by-side picture of the chart and SDB imagery for the intended anchorage location in Nantucket Sound. SDB imagery indicated a shoal that covered half of the anchorage safety circle. A Z-boat verified the indicated shoal was almost 30 ft shoaler than charted and without this useful imagery, the ship and launches could have run aground.

Side-by-side picture of the chart and SDB imagery for the intended anchorage location in Nantucket Sound. SDB imagery indicated a shoal that covered half of the anchorage safety circle. A Z-boat verified the indicated shoal was almost 30 ft shoaler than charted and without this useful imagery, the ship and launches could have run aground.

Ensign Head determined safe passage routes for the survey launches, using the satellite-derived bathymetry imagery overlaid on a chart of the area, as the charted soundings were not reliable. For example, a safe passage route between the study areas and the ship was located between two shoals that had shifted considerably from the chart of the area. Sections of the passage are currently charted at 20 feet or more of water, but the fathometer on the launch displayed depths of less than 10 feet.

Boat sheet for the launches indicating a potential safe passage route from the project area to the ship.

Boat sheet for the launches indicating a potential safe passage route from the project area to the ship.

After processing the multibeam data, Ensign Head determined that more than half of the charted shoals in the project area had shifted and the red zones depicted in the satellite-derived bathymetry imagery were significantly shoaler than charted depths for the surrounding area. Results from the investigation showed that the satellite-derived bathymetry for Nantucket Sound was exceptionally accurate and aided in the identification of current navigational dangers.

However, more research is needed regarding the use of satellite-derived bathymetry as a contemporary survey method. Limitations on use of the imagery can include variables such as cloud cover, turbidity, Chlorophyll a, and other water quality properties that may affect attenuation. Despite these challenges, satellite-derived bathymetry is a new tool that could support survey efforts by reducing the amount of time and area necessary to survey and by increasing the effectiveness of NOAA’s efforts to efficiently provide safe navigation to the local mariner.

Happy birthday to the man whose scientific integrity laid NOAA’s cornerstone   1 comment


Ferdinand R. Hassler

Today, October 7, Coast Survey celebrates the 245th anniversary of the birth of Ferdinand Rudolph Hassler, the Swiss immigrant whose plan to survey the U.S. coast was selected as the basis for the federal government’s first scientific foray, and who was to become the first superintendent of the U.S. Coast Survey. Hassler’s determination and uncompromising adherence to accuracy, precision, and scientific integrity during the decades-long struggle to establish the nation’s charting agency is a cornerstone of the NOAA of today.

Retired NOAA Captain Albert “Skip” Theberge, the noted NOAA historian, has written THE definitive paper on “The Hassler Legacy,” available online at the NOAA Library website. Theberge notes the formal biographical details, but then he goes beyond that, explaining how Hassler’s training and temperament contrasted with – and perhaps played into – the political machinations that resulted in a decades-long delay in the effort to create the young nation’s nautical charts.

On March 25, 1807 (after Congress passed “an act to provide for surveying the coasts of the United States”), Treasury Secretary Albert Gallatin issued a notice to all interested scientific men in the United States, asking for plans to conduct the coastal survey. Hassler responded to Gallatin’s letter less than a week later, and his proposal for a trigonometrically-based survey was accepted in July. And then it gets really interesting. From Theberge’s article:

“However, no action was taken to begin the survey until 1811 because of the unsettled international political climate. Although Jefferson was among the most scientific of United States presidents, it was odd that he was instrumental in passing a law for the Survey of the Coast in early 1807; just three months before he had instituted an economic embargo against both England and France because of their depredations against American ships and seamen. This embargo resulted in the recall of over 20,000 American seamen on the high seas and effectively terminated the American merchant marine and international trade. The embargo continued until the end of his administration.”

“Jefferson’s successor, James Madison, reinstituted the Survey and sent Hassler to Great Britain in late 1811 to procure survey instruments. Because of continuing difficulties between the two nations, Madison declared war on Great Britain eight months after Hassler’s arrival in London.”

The inconvenience of being in England (and later, France) during the War of 1812 doesn’t come close to the inconvenience caused by “those penurious keepers of the public monies,” according to Theberge. Hassler went for long periods of not being paid, his purchase of survey instruments cost more than he was authorized (so he paid the difference out of his own pocket), and then the government refused to provide for his transportation home.

Florian Cajori, Hassler’s biographer, wrote:

“… A country of almost unlimited resources permitted this able scientist, who was giving his thoughts day after day to the advancement of science and to the glory of his adopted country, to return to America at his own expense and under financial embarrassment. The Government… permitted Hassler to be personally considerably poorer than he was before he undertook his mission to Europe.”

Despite the bad treatment, Hassler accepted the appointment as Superintendent of the Survey of the Coast on August 3, 1816, and he was soon on survey reconnaissance in New Jersey, accompanied by his son. In January 1817, after just a few months of work, the Treasury Secretary asked him to “state the probable time which will be required for the execution of this Survey.”

Theberge expounds nicely on the situation:

“Consider for a moment the utter lack of understanding by the national leaders of the nature of the task of charting the coast of the United States. There was a naivete, indicative of the state of scientific and engineering knowledge in the United States during the early nineteenth century, when Secretary Crawford asked a man, who had to construct his own measuring instruments, had no vessels, and had only his son for help, how long it would take to complete the Survey of the Coast.”

The next spring, the Survey of the Coast – and Hassler – took a major hit. Congress decided that only “persons belonging to the army or navy” should be employed for the survey. Hassler was out, and 15 years of scientific debate and survey ineptitude followed. It was during this time, cast off from the government, when Hassler laid out his vision. The task, he explained, was to construct a great triangulation network that would serve as the control for all nautical surveys as well as all national land surveys. In addition to the geodetic foundation for mapping the land and charting the coasts, Hassler envisioned the establishment of a national mapping organization.

Hassler, at age 62, was reappointed as superintendent on August 9, 1832, when the Survey was transferred back into civilian control within the Treasury Department. In 1834, the Survey of the Coast finally took its first ocean soundings. In 1836, the Survey of the Coast was renamed U.S. Coast Survey. Hassler served as superintendent until his death on November 20, 1843.

Ferdinand R. Hassler’s scientific achievements had laid the foundation for much of today’s NOAA.

Hassler's first triangulation diagram

Diagram of Hassler’s original triangulation from 1817 and 1833-1834. Library of Congress, “A collection of maps, charts, drawings, surveys, etc, published from time to time, by order of the two houses of Congress.”

New small survey boats for hard working navigation response teams   1 comment

To a marine pilot looking forward to a long-awaited nautical chart update, a white NOAA survey ship “mowing the lawn” of the approaches to a port is a gorgeous site. The ship slowly moving back and forth, collecting hydrographic data from the ocean floor, is easily recognizable.

Less well known are Coast Survey’s smaller survey vessels, operated by navigation response teams (NRTs) situated strategically along the U.S. coasts. These vessels are hard worked by two- or three-member teams of physical scientists and technicians who must know everything about the vessel, the specialized survey equipment, and the science of collecting and processing data. On top of all that, they must be expert sailors.

Recognizing the value that these teams and vessels bring to our survey and charting responsibilities — not to mention their essential work in locating underwater debris after hurricanes — NOAA is “recapitalizing” the NRT fleet, building new small boats specifically designed for hydrographic surveying. The first two boats, built by Lake Assault Boats of Superior, Wisconsin, were delivered this week to navigation response teams surveying ports in California and the eastern Gulf of Mexico.

NRT 6 new boat

A new survey boat was recently delivered to a navigation response team surveying in California.

“All of the navigation response team survey boats are nearing or have exceeded their designed service life,” said Russ Proctor, chief of Coast Survey’s Navigation Services Division. “A phased program to replace the navigation response team boats over the next three years will help NOAA maintain the program’s crucial capacity for inshore surveys and rapid response in emergencies.”

Coast Survey’s phased retirement of its current fleet of NRT vessels has prioritized the replacement of boats experiencing the highest escalating maintenance costs.

Navigation response teams protect navigation while they wait for new vessels

In the last 30 days alone, Coast Survey’s navigation response teams have located potential dangers in Georgia and California waters.

The U.S. Coast Guard’s Marine Safety Unit Savannah asked for Coast Survey assistance in locating a fishing vessel that sank on Sunday, September 6. A Coast Survey navigation response team, led by Erik Anderson, located the wreck off Cumberland Island in St. Andrew Sound, pinpointed its position and depth, and delivered images of the vessel.

It was important that the team move quickly. A dive team sent by the Coast Guard on September 7 was unable to locate the wreck — and time was of the essence, since there were indications that the vessel had approximately 700 to 1,000 gallons of diesel onboard. In addition to needing a report on the condition of the vessel (was it intact or in pieces?), the Coast Guard had to find out if the wreck was obstructing a navigable waterway.

The navigation response team hit the water early on September 8. By 10:40 a.m., within two hours of operations, Anderson reported that his team located the wreck with side scan sonar and developed it with their multibeam echo sounder.

Cumberland Island wreck

Using side scan sonar, a navigation response team located this wreck near Cumberland Island.

“The boat appears to be sitting on its port side with the least depth [26 feet] coming from its mast that is located on the top of the wheelhouse,” Anderson reported. “The least depth is based on preliminary tides but will most likely stick as the tide station data looks to be solid for today,” he explained.

On August 26, a navigation response team in Richmond, California, (led by Laura Pagano) was putting the finishing touches on upgrades to Coast Survey’s MIST kit — a mobile, quick-install side scan / single beam sonar kit that can be quickly set up on a vessel of opportunity. While they were taking the MIST through its paces, they found a potential danger to navigation in the Richmond Channel. After the California navigation manager notified appropriate authorities, the U.S. Army Corps of Engineers removed the obstruction before it could do any damage.


Richmond Channel object

This is the object discovered by the navigation response team, after it was pulled from the Richmond Channel. Danger to navigation averted.


Get every new post delivered to your Inbox.

Join 10,816 other followers

%d bloggers like this: