NOAA positions hydrographic survey assets in Hawaii in preparation for Hurricane Lane

As Hurricane Lane approaches the Hawaiian Islands as a Category 4 storm with wind gusts reaching 150 mph in some locations, NOAA is prestaging personnel and hydrographic survey assets to help speed the resumption of shipping post storm.

According to a recent news release from the office of Governor David Ige of Hawaii, the state is in the process of closing commercial harbors. Gov. Ige states, “This is important because the harbors are our lifeline to essentials such as food and products. We must protect the harbors and piers so that shipping operations can resume once the storm has passed.”

Projected path of Hurricane Lane as seen in nowCOAST™
Projected path of Hurricane Lane as seen in nowCOAST™ as of early afternoon (EDT) August 23, 2018.

Coast Survey mobilizes survey teams to search for underwater debris and shoaling after hurricanes, to speed the resumption of ocean-going commerce. In this case, since navigation response team (NRT) vessels are unable to reach Hawaii, NOAA’s mobile integrated survey team (MIST) is traveling to Oahu with survey equipment in tow. Comprised of hydrographic survey experts with experience in rapid emergency response, the MIST can quickly install a sonar kit on a “vessel of opportunity” and be out on the water as soon as practicable. For the first time, the team will be using a new multibeam echo sounder kit, adding to the traditional arsenal of side scan and singlebeam sonars. This new capability will allow the MIST to provide high resolution depth information throughout the survey area.

As seen most recently in response to hurricanes Harvey, Irma, and Maria, the team’s flexibility allows them to quickly respond in waterways where the U.S. Coast Guard needs them most. For Hurricane Lane response, the MIST members include Mike Annis, NOAA scientist and lead of NOAA’s MIST; Erin Diurba, team member of NRT Galveston, Texas; Lt. j.g. Dylan Kosten, officer in charge of NRT New London, Connecticut; and Michael Bloom, team member of NRT New London.

Mike Annis (right), NOAA scientist and lead of NOAA’s Mobile Integrated Survey Team (MIST), and LCDR Jonathan French, mount side scan sonar on a Coast Guard vessel in Key West.
NOAA MIST will install hydrographic survey equipment on a “vessel of opportunity” in Hawaii similar to their project in Key West, Florida, (pictured) when responding to the aftermath of Hurricane Irma in 2017. Mike Annis (right) and Lt. Cmdr. Jonathan French (left) mount a side scan sonar on a Coast Guard vessel.

NOAA’s northwest and Pacific Islands regional navigation manager, Crescent Moegling, is currently embedded within the U.S. Coast Guard Sector Honolulu Marine Transportation System Recovery Unit (MTSRU) and working with Coast Guard District 14, the U.S. Army Corps of Engineers, and the Department of Transportation Harbors. She will be assisting with port survey prioritization and providing information on the status of NOAA’s survey assets and their readiness. As soon as the Coast Guard can assess where survey response is needed most, the NOAA team will deploy.

Coast Survey spotlight: Meet Lt. Bart Buesseler


Ever wonder what it’s like to be a member of the NOAA Coast Survey team? We use the Coast Survey spotlight blog series as a way to periodically share the experiences of Coast Survey employees as they discuss their work, background, and advice.


Lt. Bart Buesseler, navigation manager

“It is extremely rewarding to interact with our users and see how important our products are to their livelihoods. I’ve always known our work was “important”, but to actually get that feedback on a daily basis from the users motivates me to come to work every day.”

Lt. Bart Buesseler dressed in an immersion suit (also called a gumby suit) following a man overboard drill on NOAA Ship Rainier in Whale Pass, Alaska.
Lt. Bart Buesseler dressed in an immersion suit (also called a gumby suit) following a man overboard drill on NOAA Ship Rainier in Whale Pass, Alaska.

What is your job title, and how long have you worked for NOAA Coast Survey?

I am a regional navigation manager for Alaska. I have been in the NOAA Corps for eight years and almost all of that time has been in support of Coast Survey.

What were your experiences prior to working for Coast Survey?

I joined NOAA immediately following graduation from my bachelors program in mechanical engineering. I had experience as an intern working in the transportation industry (trucking) and alternative energy field (fuel cells), but was really looking for a job that got me outside and had an “adventure” aspect to it. I definitely found that with NOAA.

What is a day in your job like?

It’s highly dynamic, but focuses on communicating needs and requests from the maritime community here in Alaska to the folks in our headquarters in Silver Spring (and vice versa). This also means I attend a lot of meetings across the state in order to get a better understanding of what is most pressing in each area. Once I gather these needs and requests it’s then a matter of connecting to the right people at Coast Survey or elsewhere in NOAA to see what we can do about them.

Why is this work important?

Alaska’s survey needs can be daunting at first glance considering the size of the state and the difficulties of working in remote environments. In order to pare these needs down to a manageable size we need to know what is most important, and there is no better resource for that than those who rely on our products on a daily basis. By interacting directly with the end user of our products I’m able to help Coast Survey make sure that the work we’re doing is the work people using our products want us to do.

What aspects of your job are most exciting or rewarding to you?

I love that part of my current job is to travel around the amazing state of Alaska. The natural beauty is breathtaking, and the people are driven, collaborating on common goals. That collaboration also extends within NOAA, as I’ve found myself working closely with other parts of the National Ocean Service, NOAA Fisheries, and the National Weather Service, which has been a fantastic experience. Furthermore, it is extremely rewarding to interact with our users and see how important our products are to their livelihoods. I’ve always known our work was “important”, but to actually get that feedback on a daily basis from the users motivates me to come to work every day.

 

From NOAA Ship Fairweather to Mt. Fairweather: Commanding officer summits ship’s namesake

By Cmdr. Mark Van Waes, former Commanding Officer of NOAA Ship Fairweather

Mount Fairweather stands tall above Glacier Bay National Park and Preserve, dominating the skyline for miles around (when weather permits visibility). Only about 12 miles inshore from the Gulf of Alaska and soaring to 15,325 feet, it is one of the highest coastal peaks in the world.

NOAA Ship Fairweather in the Gulf of Alaska, with Mount Fairweather in the background.
NOAA Ship Fairweather in the Gulf of Alaska, with Mount Fairweather in the background.

Named for the remote mountain peak, NOAA Ship Fairweather surveys the waters of Alaska and the Pacific Northwest, making maritime commerce safer, contributing to scientific discovery, and locating lost vessels. The ship, commissioned in 1968 and celebrating 50 years of service to the nation this year, is currently hard at work in Alaska’s Arctic waters to ensure safe navigation for increasing traffic in the region.

Climbers look to the summit of Mount Fairweather.
Climbers look to the summit of Mount Fairweather.

Though I had only ever seen Mount Fairweather from sea (usually on board either NOAA Ship Rainier or Fairweather), I have been drawn to it for years. Since I summited my first mountain (Mount Rainier in 2007), I’d thought that a trip to climb this remote, seldom-climbed peak would be a worthy adventure. I was fortunate that a series of happenstances occurred that made possible an attempt this May. While NOAA Ship Fairweather was docked for mid-season repairs in Juneau, Alaska, I was able to make my way over to Haines, and from there set out with a team of climbers to make a bid for the peak.

The high camp, at an elevation of 10,400 feet on the Grand Plateau Glacier.
The high camp, at an elevation of 10,400 feet on the Grand Plateau Glacier.

Having endured numerous days’ delay due to weather (Captain Cook must have caught the mountain on a good day when he bestowed its name), early in the morning on Tuesday, May 29, we set out from our high camp at 10,400 feet en route to the summit. At 1:16 p.m. Alaska time and after 10 hours of climbing we were standing atop the mountain. With bright sun and clear blue skies overhead and a layer of clouds below at about 9,000 feet, we marveled at the view of peaks, such as Mount Saint Elias and Mount Logan, visible in the distance. It was, as is the attainment of any mountain summit, both an exhilarating and humbling experience.

Cmdr. Van Waes holds the NOAA flag atop the summit of Mount Fairweather
Cmdr. Van Waes holds the NOAA flag atop the summit of Mount Fairweather.

The surveyors of NOAA’s predecessor agency, the U.S. Coast and Geodetic Survey, would scale mountains such as these in their work to map the land in which we live. The summit of this mountain forms a corner of the border with British Columbia, and the mountain is the highest point in that Canadian province. Surveying such remote locations to define our nation’s borders was a important part of the work of the hardy folks who served in the U.S. Coast and Geodetic Survey. Though we no longer have the need to do so to the extent that they did in the past, it is interesting and instructive to get an idea of what they had to endure to accomplish the tasks before them.

As a mariner, I had long thought that the vastness of the sea would make anyone feel small. For me, however, it is the mountains that truly help put things in perspective. Their grandeur and ability to inspire awe is unmatched, as is their ability to instill a sense of place. Having spent the majority of my seagoing time aboard the NOAA Ships Rainier and Fairweather, culminating with a command tour aboard Fairweather, climbing these mountains has been a bridge between my time aboard and the history behind the ships. In the fifty years that they have been in service they have been a steady presence in NOAA’s fleet, just as the mountains for which they are named have stood tall above their respective skylines.

 

NOAA researches autonomous survey system in the Arctic

By Rob Downs, Office of Coast Survey unmanned systems projects lead

A team composed of research engineers and a graduate student from the University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center (UNH CCOM/JHC) and personnel from NOAA’s Office of Coast Survey are aboard the NOAA Ship Fairweather to test UNH’s BEN (Bathymetric Explorer and Navigator) unmanned surface vehicle (USV). On Saturday, July 28, the Fairweather made the first successful launch of a USV for an operational hydrographic survey from a NOAA vessel in the Arctic. The team conducted four additional deployments, including an extended overnight survey made in coordination with the ship.

The unmanned surface vehicle BEN launched from NOAA Ship Fairweather. Photo by Christina Belton, NOAA.
The unmanned surface vehicle BEN launched from NOAA Ship Fairweather. Photo by Christina Belton, NOAA.

Coast Survey will use the data BEN collects to contribute to Fairweather’s Point Hope survey project. With the support from the Fairweather’s command and crew, the team is operating USV hydrographic surveys in coordination with the ship and its survey launches to explore and develop new operational models with unmanned systems, identify and possibly solve shortcomings in the technology, and provide experience to the ship’s crew in the operations and support of unmanned systems.

The Arctic is well suited to testing unmanned systems because relatively low traffic minimizes the risk of encounters with other vessels. In addition, the expense of conducting hydrographic surveys in such remote areas makes the potential gains in the data acquisition capacity from USVs particularly attractive for NOAA survey ships.

BEN independently follows programmed lines.
BEN independently follows programmed lines.

BEN is manufactured by ASV Global and is significantly larger (13 feet vs. 3 feet), has a much longer endurance (more than 16 hours vs. 6 hours), and is faster (5 knots vs. 2 knots) than the small USVs operated from other NOAA hydrographic survey vessels. BEN is equipped with a standard suite of hydrographic survey equipment and can independently follow planned survey lines at a distance of approximately 5 miles from the ship. The USV can also be remotely driven when alongside the ship for deployment and recovery.

The capabilities of autonomous survey systems are rapidly advancing, and developing autonomous system technology and procedures is a key piece of Coast Survey’s autonomous systems strategy.

 

NOAA welcomes local and international attendees at 2018 Nautical Cartography Open House

Last week NOAA Coast Survey welcomed approximately 170 attendees representing 17 countries to the 2018 Nautical Cartography Open House. Industry partners, members of the public, and other government agencies attended, including the Bureau of Ocean Energy Management, Naval Hydrographic and Oceanic Service (SHOM) from France, Canadian Hydrographic Service, Dalian Naval Academy, National Taiwan Ocean University, and the Joint Hydrographic Center/Center for Coastal and Ocean Mapping (JHC/CCOM).

This one-day event featured posters, presentations, tours, and exhibits centered around four themes: Applied Cartography within the U.S., International Cartography, Electronic Navigational Chart Production and Validation, and Capacity Building. Capt. Marc van der Donck from the Royal Netherlands Navy gave the keynote speech, and Coast Survey’s Rear Adm. Shep Smith welcomed the attendees.

Capt. van der Donck spoke on the past, present, and future of cartography.
Capt. van der Donck (Netherlands) spoke on the past, present, and future of cartography.

The 2018 open house built on the success of last year’s inaugural event. This year, the event included informational stations on historic pen and ink cartographic processes as well as modern cartographic techniques and displays. Attendees were also able to join tours of NOAA Science on the Sphere® and see cartographic visualizations of oceanic and atmospheric data.

Coast Survey employees speak with Rear Adm. Gallaudet (Navy, Ret.) about cartographic processes before computers.
Coast Survey employees speak with Rear Adm. Gallaudet (Navy, Ret.) about cartographic processes before computers.

The goals of open house were to report on current and future activities in cartography and GIS, establish a regional and international network of cartographers in the field of nautical charting, create collaborative activities between international members, and identify challenges in generating, producing, maintaining, and distributing nautical charts. The open house provided the opportunity for international colleagues in marine cartography to network and share ideas.

Open house attendees interact during the poster session.
Open house attendees interact during the poster session.

The open house followed the International Cartographic Association (ICA) Working Group on Marine Cartography meeting and a three-day Chart Adequacy Workshop hosted by NOAA.

 

NOAA hosts 2018 Chart Adequacy Workshop

On July 23, NOAA Coast Survey hosted a three-day Chart Adequacy Workshop that included participants from 13 countries. This is the fourth Chart Adequacy Workshop held at NOAA’s Silver Spring, Maryland campus.

The participants of the 2018 Chart Adequacy Workshop.
Participants and instructors of the 2018 Chart Adequacy Workshop.

The main goal of the workshop is to provide training for professional cartographers and hydrographers on techniques for assessing nautical chart adequacy using publicly-available information, such as satellite images and maritime automatic identification system (AIS) data. The participants received an overview on Coast Survey datasets, processes, and requirements for nautical charts. They also learned about preprocessing hydrographic data, such as loading charts, uploading imagery, and applying electronic navigation charts (ENCs) and AIS point data. Through a series of lab units, the attendees practiced performing the concepts they learned.

Unlike previous years (2017, 2016, 2015), the focus of this class was on networking and support for the upcoming International Cartographic Association (ICA) Working Group on Marine Cartography meeting held on July 26 and in preparation for next year’s International Cartographic Conference (ICC). During the 2019 ICC in Tokyo, Japan, a key focus for the Working Group on Marine Cartography will be to return to the status of a Commission on Marine Cartography.

An attendee shares information about her home cartographic offices with other participants.
An attendee shares information about her home cartographic offices with other participants.

The 2018 participants were from Australia, Greece, Ireland, Japan, Latvia, Madagascar, Mexico, Nigeria, Peru, Poland, St. Vincent and the Grenadines, Taiwan, and Trinidad and Tobago. The international nature of the event allows the participants to meet and learn from cartographers from a variety of backgrounds and expertise. The individuals were nominated by their home hydrographic offices and their travel was sponsored by the General Bathymetric Chart of the Oceans (GEBCO).

Rear Adm. Shep Smith greets the workshop attendees as they begin a tour of the Coast Survey offices in Silver Spring, Maryland
Rear Adm. Shep Smith greets the workshop attendees as they begin a tour of the Coast Survey office in Silver Spring, Maryland

The workshop was developed in part to address the need to improve the collection, quality, and availability of hydrographic data world-wide, and increase the standardization of chart adequacy evaluations across the globe. Coast Survey is currently working with the International Hydrographic Organization (IHO) to recommend participants for next year’s workshop.

NOAA surveys the unsurveyed, leading the way in the U.S. Arctic

President Thomas Jefferson, who founded Coast Survey in 1807, commissioned Lewis and Clark’s Corps of Discovery Expedition in 1803, the first American expedition to cross the western portion of the contiguous United States. Today there remains a vast western America territory that is largely unknown and unexplored – the U.S. waters off the coast of Alaska. As a leader in ocean mapping, NOAA Coast Survey launches hydrographic expeditions to discover what lies underneath the water’s surface.

Alaska is one-fifth the size of the contiguous United States, and has more than 33,000 miles of shoreline. In fact, the Alaskan coast comprises 57 percent of the United States’ navigationally significant waters and all of the United States’ Arctic territory. Alaskan and Arctic waters are largely uncharted with modern surveys, and many areas that have soundings were surveyed using early lead line technology from the time of Capt. Cook, before the region was part of the United States. Currently only 4.1 percent of the U.S. maritime Arctic has been charted to modern international navigation standards.

A launch from NOAA Ship Fairweather surveys near ice in the U.S. Arctic.
A launch from NOAA Ship Fairweather surveys near ice in the U.S. Arctic.

In part, Arctic waters are difficult to survey because of the sheets of sea ice persist throughout the majority of the year. Traditionally, thick ice sheets have restricted the number of vessels that travel in the area. But Arctic ice is declining and sea ice melt forecasts indicate the complete loss of summer sea ice in the Arctic Ocean as early as two or three decades from now, meaning year-round commercial vessel traffic is likely to increase.

Given the vast expanse of ocean to be charted in the U.S. Arctic, Coast Survey determined charting priorities and coordinated activities in the U.S. Arctic Nautical Charting Plan, the third issue of which was released in August 2016. The plan proposes 14 new charts and was created following consultations with maritime interests, the public, and federal, state, and local governments.

In July and August, the crew aboard the NOAA Ship Fairweather is fulfilling a piece of the U.S. Arctic Nautical Charting Plan as they conduct hydrographic surveys in the vicinity of Cape Lisburne and Point Hope, Alaska. Seventy percent of this area has never been surveyed, while the remaining 30 percent has only lesser bottom coverage from single beam surveys conducted in the early 1960s. The data will be used to produce nautical charts that align with Coast Survey’s new rescheming efforts as stated in the National Charting Plan. This is one of seven hydrographic surveys NOAA has planned in Alaska for 2018. 

The data Coast Survey collects is the first step, as exploration is an iterative process and bathymetric data provides a foundation from which to build. The benefits of surveying extend beyond safe navigation. Accurate seafloor depths are important for forecasting weather, tsunami, and storm surge events that affect local communities. Bathymetric data also informs the discovery of seabed minerals, historic wrecks, and natural resource habitat mapping.

NOAA explores remote Alaskan waters.
NOAA explores remote Alaskan waters.

As with any new endeavor, there is a balance between exploration, safety, environmental conservation, and commerce. Lt. Bart Buesseler is Coast Survey’s regional navigation manager for Alaska and works directly with Alaskan communities, mariners, and port authorities to communicate local needs, concerns, and requests. As many Native Alaskan coastal communities still rely on subsistence hunting of marine mammals, these changes in ice and vessel traffic create a direct impact to their way of life. With that in mind, Lt. Buesseler works with communities and maritime users to identify the priorities that will best support the needs of an area while still addressing the concerns of the communities. It is through this collaboration that the balance between exploration, safety, conservation, and commerce can be achieved.

The Lewis and Clark expedition aimed to map a new territory, learn about the environment, and find a practical land route through the continent. By conducting hydrographic surveys to collect depth measurements of the ocean – and putting those markings on a nautical chart with other navigation information – Coast Survey leads the way for safe maritime passage in the U.S. Arctic.