NOAA Ship Thomas Jefferson completes 2018 survey work in the Approaches to Houston-Galveston

By Lt. Charles Wisotzkey

NOAA Ship Thomas Jefferson departed the western Gulf of Mexico in early August 2018 after completing scheduled survey operations on the Approaches to Houston project. Data collected for the project will update nautical charts for the approaches to the main shipping channel leading to the ports of Houston and Galveston.

tj-galveston1
Thomas Jefferson‘s project area located southeast of the entrance to Galveston Bay.

The Port of Houston is the largest U.S. port in terms of foreign trade and petroleum products. The main shipping channel extends from Houston, down the Buffalo Bayou, through Galveston Bay, and into the Gulf of Mexico at the pass between Galveston Island and the Bolivar Peninsula. The approaches to Galveston Bay are heavily trafficked by all manner of commercial vessels. In fact, the anchorages outside of the entrance to Galveston Bay were among the busiest traffic areas the ship’s command had experienced.

tj-galveston2
Automatic Identification System (AIS) traffic near the entrance to Galveston Bay. Each red, green, and blue symbol represents a separate vessel. Most of the offshore AIS symbols represent, in this instance, large commercial vessels (MarineTraffic 2018).
tj-galveston3
A closer look at Thomas Jefferson‘s project area highlights its navigational characteristics.

Multiple safety fairways and numerous oil platforms with pipeline infrastructure are shown in the image above. The safety fairways are kept clear of oil and gas infrastructure and are used by large commercial traffic to transit around the Gulf of Mexico; however, obstructions are sometimes reported and charted within the bounds of the safety fairways. 

tj-galveston4
An example of an abnormal traffic situation caused by the presence of position approximate (PA) obstructions in the safety fairway that leads into the entrance to Galveston Bay.

The image above shows two charted position approximate (PA) obstructions within the safety fairway to the south of Thomas Jefferson’s main project area. As seen in the image, two vessels favor the north side of the safety fairway in order to avoid the charted PA obstructions and passing nearer to each other than would otherwise be prudent. In this case, both PA obstructions were disproved by Thomas Jefferson and will be removed from the chart.

Overall, the Approaches to Houston project was highly successful. Thomas Jefferson was able to collect over 9,500 linear nautical miles and more than 500 square nautical miles of survey data. In addition to the two PA obstructions described previously, Thomas Jefferson corrected the position of five navigationally significant wrecks and obstructions, disproved the existence of one additional navigationally significant charted obstruction, identified two previously uncharted wrecks, provided updated Aid to Navigation data to the U.S. Coast Guard, and located numerous uncharted and/or exposed pipelines. This work will improve chart quality for an area of critical importance to our nation’s economy.

tj-galveston5
The crew of the Thomas Jefferson, along with local Houston/Galveston NOAA partners, shared the positive impact of the ship’s work at a successful public relations event in Galveston, Texas, in July. From left to right: Ensign Sydney Catoire (Thomas Jefferson), Charles Rowland (Navigation Response Branch (NRB)), Alan Bunn (NOAA navigation manager), Erin Diurba (NRB), Katie Magee (National Weather Service (NWS)), Sarah Randall (NWS), Dan Jacobs (NRB), and Cmdr. Chris Van Westendorp (CO Thomas Jefferson). 

 

 

 

 

 

 

 

 

 

NOAA Ship Rainier completes hydrographic surveys in Southeast Alaska

By Ensign Airlie Pickett

In early June of this year, NOAA Ship Rainier headed up the inside passage to Southeast Alaska to conduct hydrographic survey operations in two project areas. The first, Tracy Arm Fjord, is located in the Tongass National Forest and is home to a number of glaciers making it a popular destination for tourists and the cruise ships and sightseeing vessels that carry them. From 2014-2015, a little over two million out-of-state visitors traveled to Alaska, bringing over $4 billion and 39,700 jobs to the state. Nearly half of those visitors arrived via cruise ships (Alaska Department of Commerce, Community, and Economic Development, 2016).

rainier1
Location of Tracy Arm Fjord and Lisianski Inlet in Southeast Alaska.
rainier2
Bathymetric data collected by Rainier in Tracy Arm Fjord.

The area was last surveyed in 1974 using only partial-bottom coverage techniques. Since then, technology has improved vastly and complete bottom coverage is now possible. Rainier and her five survey launches are equipped with multibeam echo sounders, which provide a much greater density of soundings, from which a highly detailed 3-dimensional surface can be created.

At the far ends of the Tracy Arm Fjord are two glaciers, the Sawyer Glacier and the South Sawyer Glacier. Satellite imagery (and in-person investigations) reveal that over the past few decades the glaciers have receded significantly, leaving a large area of completely unsurveyed water directly preceding the glaciers.

rainier3
Previously unsurveyed area overlaid with an image of Rainier’s newly gathered hydrographic data. At the Sawyer Glacier (left), Rainier collected new hydrographic data approximately .75 miles past the previously surveyed area, and at the South Sawyer Glacier (right), she sailed a full mile into uncharted territory.

The survey was conducted in early summer, and the warm weather made itself known. Both glaciers began to calve in earnest and strong glacial currents and prolific icebergs made this survey operationally challenging. In addition, the high canyon walls of the fjord impeded communications, making it difficult for the ship and her survey launches to maintain contact.

rainier4
Two of Rainier’s launches operating in the iceberg laden waters of Tracy Arm Fjord. Credit: Amanda Finn, Survey Technician, NOAA

The data collected from this survey will also be used by glaciologists, providing a highly detailed 3-dimensional view of the path taken by the glacier as it receded. Rainier’s data reveals ridges across the seabed at several points along the fjord.  These features, called moraines, are formed where glacier recession stopped for a period of time.

rainier5
A well-defined moraine located just before the junction between the two arms on the east side of the fjord.

 

rainier6
Rainier in front of the South Sawyer Glacier. Credit: Ensign Collin Walker, NOAA

The second survey completed by Rainier during this time was in Lisianski Inlet, home to the town of Pelican, population: 88. Lisianski Inlet is a popular location for recreational boaters and yachts as well as being an important route of the Alaska Marine Highway ferry system. The area was last surveyed in 1917 using lead lines. Rainier’s full-bottom coverage using multibeam sonar will greatly enhance the accuracy of local charts and assist local mariners in safe navigation.

rainier7
Bathymetric data collected by Rainier in Lisianski Inlet.
rainier8
One of Rainier’s Survey launches underway in Lisianski Inlet. Credit: Amanda Finn, Survey Technician, NOAA

 

NOAA positions hydrographic survey assets in Hawaii in preparation for Hurricane Lane

As Hurricane Lane approaches the Hawaiian Islands as a Category 4 storm with wind gusts reaching 150 mph in some locations, NOAA is prestaging personnel and hydrographic survey assets to help speed the resumption of shipping post storm.

According to a recent news release from the office of Governor David Ige of Hawaii, the state is in the process of closing commercial harbors. Gov. Ige states, “This is important because the harbors are our lifeline to essentials such as food and products. We must protect the harbors and piers so that shipping operations can resume once the storm has passed.”

Projected path of Hurricane Lane as seen in nowCOAST™
Projected path of Hurricane Lane as seen in nowCOAST™ as of early afternoon (EDT) August 23, 2018.

Coast Survey mobilizes survey teams to search for underwater debris and shoaling after hurricanes, to speed the resumption of ocean-going commerce. In this case, since navigation response team (NRT) vessels are unable to reach Hawaii, NOAA’s mobile integrated survey team (MIST) is traveling to Oahu with survey equipment in tow. Comprised of hydrographic survey experts with experience in rapid emergency response, the MIST can quickly install a sonar kit on a “vessel of opportunity” and be out on the water as soon as practicable. For the first time, the team will be using a new multibeam echo sounder kit, adding to the traditional arsenal of side scan and singlebeam sonars. This new capability will allow the MIST to provide high resolution depth information throughout the survey area.

As seen most recently in response to hurricanes Harvey, Irma, and Maria, the team’s flexibility allows them to quickly respond in waterways where the U.S. Coast Guard needs them most. For Hurricane Lane response, the MIST members include Mike Annis, NOAA scientist and lead of NOAA’s MIST; Erin Diurba, team member of NRT Galveston, Texas; Lt. j.g. Dylan Kosten, officer in charge of NRT New London, Connecticut; and Michael Bloom, team member of NRT New London.

Mike Annis (right), NOAA scientist and lead of NOAA’s Mobile Integrated Survey Team (MIST), and LCDR Jonathan French, mount side scan sonar on a Coast Guard vessel in Key West.
NOAA MIST will install hydrographic survey equipment on a “vessel of opportunity” in Hawaii similar to their project in Key West, Florida, (pictured) when responding to the aftermath of Hurricane Irma in 2017. Mike Annis (right) and Lt. Cmdr. Jonathan French (left) mount a side scan sonar on a Coast Guard vessel.

NOAA’s northwest and Pacific Islands regional navigation manager, Crescent Moegling, is currently embedded within the U.S. Coast Guard Sector Honolulu Marine Transportation System Recovery Unit (MTSRU) and working with Coast Guard District 14, the U.S. Army Corps of Engineers, and the Department of Transportation Harbors. She will be assisting with port survey prioritization and providing information on the status of NOAA’s survey assets and their readiness. As soon as the Coast Guard can assess where survey response is needed most, the NOAA team will deploy.

Coast Survey spotlight: Meet Lt. Bart Buesseler


Ever wonder what it’s like to be a member of the NOAA Coast Survey team? We use the Coast Survey spotlight blog series as a way to periodically share the experiences of Coast Survey employees as they discuss their work, background, and advice.


Lt. Bart Buesseler, navigation manager

“It is extremely rewarding to interact with our users and see how important our products are to their livelihoods. I’ve always known our work was “important”, but to actually get that feedback on a daily basis from the users motivates me to come to work every day.”

Lt. Bart Buesseler dressed in an immersion suit (also called a gumby suit) following a man overboard drill on NOAA Ship Rainier in Whale Pass, Alaska.
Lt. Bart Buesseler dressed in an immersion suit (also called a gumby suit) following a man overboard drill on NOAA Ship Rainier in Whale Pass, Alaska.

What is your job title, and how long have you worked for NOAA Coast Survey?

I am a regional navigation manager for Alaska. I have been in the NOAA Corps for eight years and almost all of that time has been in support of Coast Survey.

What were your experiences prior to working for Coast Survey?

I joined NOAA immediately following graduation from my bachelors program in mechanical engineering. I had experience as an intern working in the transportation industry (trucking) and alternative energy field (fuel cells), but was really looking for a job that got me outside and had an “adventure” aspect to it. I definitely found that with NOAA.

What is a day in your job like?

It’s highly dynamic, but focuses on communicating needs and requests from the maritime community here in Alaska to the folks in our headquarters in Silver Spring (and vice versa). This also means I attend a lot of meetings across the state in order to get a better understanding of what is most pressing in each area. Once I gather these needs and requests it’s then a matter of connecting to the right people at Coast Survey or elsewhere in NOAA to see what we can do about them.

Why is this work important?

Alaska’s survey needs can be daunting at first glance considering the size of the state and the difficulties of working in remote environments. In order to pare these needs down to a manageable size we need to know what is most important, and there is no better resource for that than those who rely on our products on a daily basis. By interacting directly with the end user of our products I’m able to help Coast Survey make sure that the work we’re doing is the work people using our products want us to do.

What aspects of your job are most exciting or rewarding to you?

I love that part of my current job is to travel around the amazing state of Alaska. The natural beauty is breathtaking, and the people are driven, collaborating on common goals. That collaboration also extends within NOAA, as I’ve found myself working closely with other parts of the National Ocean Service, NOAA Fisheries, and the National Weather Service, which has been a fantastic experience. Furthermore, it is extremely rewarding to interact with our users and see how important our products are to their livelihoods. I’ve always known our work was “important”, but to actually get that feedback on a daily basis from the users motivates me to come to work every day.

 

From NOAA Ship Fairweather to Mt. Fairweather: Commanding officer summits ship’s namesake

By Cmdr. Mark Van Waes, former Commanding Officer of NOAA Ship Fairweather

Mount Fairweather stands tall above Glacier Bay National Park and Preserve, dominating the skyline for miles around (when weather permits visibility). Only about 12 miles inshore from the Gulf of Alaska and soaring to 15,325 feet, it is one of the highest coastal peaks in the world.

NOAA Ship Fairweather in the Gulf of Alaska, with Mount Fairweather in the background.
NOAA Ship Fairweather in the Gulf of Alaska, with Mount Fairweather in the background.

Named for the remote mountain peak, NOAA Ship Fairweather surveys the waters of Alaska and the Pacific Northwest, making maritime commerce safer, contributing to scientific discovery, and locating lost vessels. The ship, commissioned in 1968 and celebrating 50 years of service to the nation this year, is currently hard at work in Alaska’s Arctic waters to ensure safe navigation for increasing traffic in the region.

Climbers look to the summit of Mount Fairweather.
Climbers look to the summit of Mount Fairweather.

Though I had only ever seen Mount Fairweather from sea (usually on board either NOAA Ship Rainier or Fairweather), I have been drawn to it for years. Since I summited my first mountain (Mount Rainier in 2007), I’d thought that a trip to climb this remote, seldom-climbed peak would be a worthy adventure. I was fortunate that a series of happenstances occurred that made possible an attempt this May. While NOAA Ship Fairweather was docked for mid-season repairs in Juneau, Alaska, I was able to make my way over to Haines, and from there set out with a team of climbers to make a bid for the peak.

The high camp, at an elevation of 10,400 feet on the Grand Plateau Glacier.
The high camp, at an elevation of 10,400 feet on the Grand Plateau Glacier.

Having endured numerous days’ delay due to weather (Captain Cook must have caught the mountain on a good day when he bestowed its name), early in the morning on Tuesday, May 29, we set out from our high camp at 10,400 feet en route to the summit. At 1:16 p.m. Alaska time and after 10 hours of climbing we were standing atop the mountain. With bright sun and clear blue skies overhead and a layer of clouds below at about 9,000 feet, we marveled at the view of peaks, such as Mount Saint Elias and Mount Logan, visible in the distance. It was, as is the attainment of any mountain summit, both an exhilarating and humbling experience.

Cmdr. Van Waes holds the NOAA flag atop the summit of Mount Fairweather
Cmdr. Van Waes holds the NOAA flag atop the summit of Mount Fairweather.

The surveyors of NOAA’s predecessor agency, the U.S. Coast and Geodetic Survey, would scale mountains such as these in their work to map the land in which we live. The summit of this mountain forms a corner of the border with British Columbia, and the mountain is the highest point in that Canadian province. Surveying such remote locations to define our nation’s borders was a important part of the work of the hardy folks who served in the U.S. Coast and Geodetic Survey. Though we no longer have the need to do so to the extent that they did in the past, it is interesting and instructive to get an idea of what they had to endure to accomplish the tasks before them.

As a mariner, I had long thought that the vastness of the sea would make anyone feel small. For me, however, it is the mountains that truly help put things in perspective. Their grandeur and ability to inspire awe is unmatched, as is their ability to instill a sense of place. Having spent the majority of my seagoing time aboard the NOAA Ships Rainier and Fairweather, culminating with a command tour aboard Fairweather, climbing these mountains has been a bridge between my time aboard and the history behind the ships. In the fifty years that they have been in service they have been a steady presence in NOAA’s fleet, just as the mountains for which they are named have stood tall above their respective skylines.