Archive for the ‘Cartography’ Category

Beta test of crowdsourced bathymetry holds promise for improving U.S. nautical charts   8 comments

We are on the verge of acquiring a significant new source of data to improve NOAA nautical charts, thanks to an enthusiastic industry and mariners equipped with new technology.

By Lt. Adam Reed, Integrated Oceans and Coastal Mapping (IOCM) Assistant Coordinator

The United States has about 3,400,000 square nautical miles of water within our coastal and Great Lakes jurisdiction. Coast Survey, who is responsible for charting that vast area, averages about 3,000 square nautical miles of hydrographic surveying each year. The data collected by those surveys update over a thousand NOAA charts. However, hydrographic surveys are expensive and laborious, and so Coast Survey directs them toward the highest priority sites, which leaves many coastal areas without updates for many years.

Coast Survey may soon get new sources of information, provided voluntarily by mariners, which will alert cartographers to areas where shoaling and other changes to the seafloor have made the chart inaccurate.

Rose Point Navigation System beta tests new crowdsourcing database

Technology has reached the point where any boater can buy an echo sounder kit, add a GPS system, record depth measurements, and make their own geospatial observations in a common reference frame. The question then for hydrographic offices (who are concerned with improving nautical charts for safe navigation) becomes “how do we take advantage of that?”

Rose Point Navigation Systems is working with system developers at NOAA’s National Centers for Environmental Information (NCEI) and with hydrographic experts at Coast Survey and others who are collaborating on an international effort to maintain crowdsourced bathymetry. In a beta test released on May 13, 2016, Rose Point has added a new feature to Coastal Explorer that gives users an option to send anonymous GPS position and soundings data to a new international database managed by NCEI. After getting permission from users, Rose Point systems will generate data log files of positions, depths, and time, and automatically transmit the files to the data center, where Coast Survey can pull the data to compare it to nautical charts.

Crowdsourced bathymetry is an international project

Using data from private sources is not new for Coast Survey. Private interactive cruising guides and other internet-based enterprises have set up services that allow commercial mariners and recreational boaters to share information about navigation hazards they see (or experience) while on the water. The United States Power Squadrons and the U.S. Coast Guard Auxiliary have a decades-long tradition of sharing updates through our cooperative charting programs. But the lack of appropriate software and integration between sources has hampered efforts to use the information to its full potential.

Hydrographic offices around the world are re-thinking crowdsourced bathymetry. In October 2014, Coast Survey led the U.S. delegation to the Fifth Extraordinary International Hydrographic Conference, with Rear Admiral Gerd Glang at the helm. At this meeting, the U.S. and France jointly proposed an initiative (see Proposal No. 4) that introduced crowdsourced bathymetry as a recognized source of data for nautical charts. One of the results of that initiative was the formation of the IHO Crowdsourced Bathymetry Working Group (IHO CSBWG) that set out to develop crowdsourcing principles and guidelines, and then offer a platform for sharing best practices around the world.

Working hand-in-hand with NCEI, the working group has developed a database that can receive volunteered bathymetric data. Data can come from anyone in the world, and everyone can access it.

Coast Survey will use crowdsourced bathymetry to assess chart accuracy

Crowdsourced reports serve an important role in focusing attention on trouble areas. The data helps cartographers determine whether a charted area needs to be re-surveyed, or if they can make changes based on the information at hand. Even with very sparse data, cartographers can make improvements to nautical charts.

Agreeing in principle to use crowdsourced data is much different than applying the system to the vigor of data transmission from moving vessels, however, so Coast Survey experts contributed hydrographic expertise and system testing. Using Rose Point’s Coastal Explorer, Coast Survey Research Vessel Bay Hydro II transmitted “crowdsourced” data using log files that were automatically produced by the electronic charting system software. (Bay Hydro II is Coast Survey’s primary platform to test and evaluate new hydrographic survey technologies.)

BHII bathymetric data collection

Coast Survey Research Vessel Bay Hydro II collected about 123,000 soundings, over 12 days, to pre-test the efficacy of Rose Point beta test for bathymetric crowdsourcing.

“When you aggregate crowdsourced data, we can expect to see trends develop where the seafloor has likely changed from charted data,” explains Lt. Anthony Klemm. “Using Bay Hydro II data transmissions, we saw such trends indicating shoaling near the Patuxent river entrance. Similarly, in the approach to Solomons harbor, trends displayed depths deeper than charted.”

It is important to emphasize that Coast Survey does not necessarily make changes to any significant charted feature based on crowdsourced data alone. That data, however, is about to become a major factor in making charts better.

How accurate are nautical charts?   5 comments

Charts will provide more information on “zone of confidence”

It is a major challenge – some might say an impossibility – to keep all thousand U.S. nautical charts up to date. But exactly how out of date is the chart data? Chart users will get a better idea now that Coast Survey is gradually rolling out a new chart feature called the zone of confidence, or “ZOC” box. It will replace the source diagram that is currently on large-scale charts. Source diagrams, and now the improved ZOC, help mariners assess hydrographic survey data and the associated level of risk to navigate in a particular area.

The first charts to show the new ZOC box are 18622, 18682, 18754, and 11328. They were released on April 7.

Both source diagrams and ZOC diagrams consist of a graphic representation of the extents of hydrographic surveys within the chart and accompanying table of related survey quality categories. Where the old source diagrams were based on inexact and sometimes subjective parameters, however, the new ZOC classifications are derived more consistently, using a combination of survey date, position accuracy, depth accuracy, and sea floor coverage (the survey’s ability to detect objects on the seafloor).

To see the zones of confidence on charts, look for the chart markings (A1, A2, B, C, and D) on the chart itself. Check the ZOC box (located on non-water portions of the chart) for the date of the data acquisition, the position accuracy, the depth accuracy, and characterization of the seafloor for each particular zone.

ZOC categories

Why do users need a “zone of confidence?

The age and accuracy of data on nautical charts can vary. Depth information on nautical charts, paper or digital, is based on data from the latest available hydrographic survey, which in many cases may be quite old. In too many cases, the data is more than 150 years old. Sometimes, particularly in Alaska, the depth measurements are so old that they may have originated from Captain Cook in 1778.

Mariners need to know if data is old. They need to understand the capabilities and the limitations of the chart. In particular, the mariner should understand that nautical chart data, especially when it is displayed on navigation systems and mobile apps, possess inherent accuracy limitations.

Before the advent of GPS, the position accuracy of features on a paper chart was more than adequate to serve the mariner’s needs. Twenty years ago, mariners were typically obtaining position fixes using radar ranges, visual bearings, or Loran C. Generally, these positioning methods were an order of magnitude less accurate than the horizontal accuracy of the survey information portrayed on the chart. Back then, Coast Survey cartographers were satisfied when we plotted a fix with three lines of position that resulted in an equilateral triangle whose sides were two millimeters in length at a chart scale of 1:20,000. In real world coordinates, the triangle would have 40-meter sides. Close enough!

Now, with GPS, charted locations that are off by 10 or 15 meters are not nearly close enough. Mariners now expect, just as they did 30 years ago, that the horizontal accuracy of their charts will be at least as accurate as the positioning system available to them. Unfortunately, charts based on data acquired with old survey technologies will never meet that expectation.

Source data is deficient by today’s standards

The overall accuracy of data portrayed on paper charts is a combination of the accuracy of the underlying source data and the accuracy of the chart compilation process. Most nautical charts are made up of survey data collected by various sources over a long time. A given chart might encompass one area that is based on a lead line and sextant hydrographic survey conducted in 1890, while another area of the same chart might have been surveyed in the year 2000 with a full-coverage shallow-water multibeam echo sounder.

In general, federal hydrographic surveys have used the highest standards, with the most accurate hydrographic survey instrumentation available at the time. On a 1:20,000-scale chart, for example, the survey data was required to be accurate to 15 meters. Features whose positions originate in the local notice to mariners, reported by unknown source, are usually charted with qualifying notations like position approximate (PA) or position doubtful (PD). The charted positions of these features, if they do exist, may be in error by miles.

Similarly, the shoreline found on most NOAA charts is based on photogrammetric or plane table surveys that are more than 30 years old.

Another component of chart accuracy involves the chart compilation process. Before NOAA’s suite of charts was scanned into raster format in 1994, all chart compilation was performed manually. Cartographers drew projection lines by hand and plotted features relative to these lines. They graphically reduced large-scale (high-detail) surveys or engineering drawings to chart scale. Very often, they referenced these drawings to state or local coordinate systems. The data would then be converted to the horizontal datum of the chart, e.g., the North American 1927 (NAD27) or the North American Datum 1983 (NAD83). In the late 1980s and early 1990s, NOAA converted all of its charts to NAD83, using averaging techniques and re-drawing all of the projection lines manually.

When NOAA scanned its charts and moved its cartographic production into a computer environment, cartographers noted variations between manually constructed projection lines and those that were computer-generated. They adjusted all of the raster charts so that the manual projection lines conformed to the computer-generated projection.

Many electronic chart positional discrepancies that are observed today originate from the past graphical chart compilation techniques. The manual application of survey data of varying scales to the fixed chart scale was a source of error that often introduced biases. Unfortunately, on any given chart, the magnitude and the direction of these discrepancies will vary in different areas of the chart. Therefore, no systematic adjustment can automatically improve chart accuracy.

Coast Survey is addressing the accuracy problem

NOAA’s suite of over a thousand nautical charts covers 95,000 miles of U.S. coastline, and includes 3.4 million square nautical miles of U.S. jurisdiction within the Exclusive Economic Zone (which is an area that extends 200 nautical miles from shore.) About half of the depth information found on NOAA charts is based on hydrographic surveys conducted before 1940. Surveys conducted with lead lines or single-beam echo sounders sampled a small percentage of the ocean bottom. Due to technological constraints, hydrographers were unable to see between the sounding lines. Depending on the water depth, these lines may have been spaced at 50, 100, 200, or 400 meters. Today, as NOAA and its contractors re-survey areas and obtain full-bottom coverage, we routinely discover previously uncharted features (some that are dangers to navigation). These features were either: 1) not detected on prior surveys; 2) man-made objects, like wrecks and obstructions, that have appeared on the ocean bottom since the prior survey; or 3) the result of natural changes that have occurred since the prior survey.

Coast Survey is also improving our chart production system. As NOAA developed its charts over the centuries, cartographers relied on separate sets of data: one set for traditional paper charts, and another for the modern electronic navigational charts. We are currently integrating a new charting system that will use one central database to produce all NOAA chart products. The new chart system slims down the system while it beefs up performance, speeding new data and updates to all chart versions of the same charted areas and removing inconsistencies.

As always, NOAA asks chart users to let us know when you find an error on a NOAA chart. Just go to the discrepancy reporting system, give us your observation, and we will take it from there.

Posted April 8, 2016 by NOAA Office of Coast Survey in Cartography, Nautical charts

Tagged with

New tips for understanding nautical chart symbols   1 comment

SymbolGlobeAs a responsible boater, you examine your nautical chart before sailing, determined to avoid problems during a nice trip along the coast. Charts are packed with symbols and abbreviations, so you might refer to the free copy of U.S. Chart No. 1, which lists all of the symbols used on NOAA nautical charts. It is an excellent quick reference for identifying unfamiliar symbols.

However, sometimes mariners need a deeper understanding…

Coast Survey is now providing additional information about complex or particularly confusing chart symbols to augment what is available in U.S. Chart No. 1. The first two tip sheets are available now. Coast Survey will add more chart symbology tip sheets to the U.S. Chart No. 1 webpage as the need arises.

Understanding NOAA chart symbology

K46.1 - FishHaven

Fish havens: The typical U.S. Chart No. 1 entry, such as this one for fish haven, lists only the name and the symbols. The tip sheet explains what fish havens are, what they look like in context with other charted features, and what restrictions may apply to them.

AnchorageSymbols

Anchorages and harbors of refuge: The anchor symbol has been used for decades to represent an anchorage on U.S. nautical charts, but the specific meaning of the symbol has evolved over the years. The tip sheet explains what the symbol means now – and, perhaps more importantly, what it doesn’t mean.

Questions or suggestions? Email USChart1@noaa.gov.

Posted March 1, 2016 by NOAA Office of Coast Survey in Cartography, Nautical charts

Tagged with

NOAA and Cuban chartmakers working together to improve maritime safety   2 comments

Callender, Gomez, and Glang

NOS Acting Assistant Administrator Russ Callender (left) and Coast Survey Director Rear Adm. Gerd Glang (right) welcome Colonel Candido Regalado Gomez, chief of Cuba’s Office of Hydrography and Geodesy.

Following up on Coast Survey’s visit to Havana last spring, Cuban hydrographic officials traveled to Maryland on December 15-17, to meet with NOAA National Ocean Service leaders for discussions about potential future collaboration. High on the agenda for Coast Survey is improving nautical charts for maritime traffic transiting the increasingly busy Straits of Florida.

The historic meeting began with Dr. Russell Callender, NOS acting assistant administrator, welcoming the Cuban delegation, led by Colonel Candido Regalado Gomez, chief of Cuba’s National Office of Hydrography and Geodesy.

“You will receive briefings today as a backdrop to the hydrographic collaboration we are pursuing to make maritime navigation safer in the transboundary waters our nations share,” Callender told the group. “I hope your meetings this week in Silver Spring will contribute to your understanding of the breadth and work of NOAA firsthand, and strengthen our work together.”

The five Cuban officials and representatives from NOAA’s navigation services and the National Geospatial-Intelligence Agency worked through the day, explaining the ins-and-outs of each other’s responsibilities and processes. The teams were ready, by the end of the jam-packed agenda, to resolve charting challenges that interfere with smooth navigational transitions from Cuban waters to U.S. waters in the busy Straits of Florida.

cubaSAISh

This heat density map of maritime traffic illustrates the high volume of traffic (the brown area south of Florida) needing seamless chart coverage.

First, Cuba’s Office of National Hydrography and Geodesy and Coast Survey’s Marine Chart Division confirmed the division of responsibilities and updated each other on the progress for collaborating on international charts (known in mariner’s parlance as “INT Charts”) 4148, 4149, 4017, and 4021. Then, in a technical move sure to please recreational boaters and commercial mariners alike, the two countries conferred on adjusting Cuba and U.S. electronic navigational charts to eliminate overlaps and gaps in coverage.

U.S. and Cuban officials

U.S. and Cuban officials met at NOAA Coast Survey offices in Silver Spring, Maryland, for an intensive day of reports and collaboration. From left to right, Dr. Russell Callender, acting assistant administrator for the National Ocean Service; Rear Admiral Gerd Glang, director of Coast Survey; Richard Edwing, director of CO-OPS; John Lowell, the National Geospatial-Intelligence Agency’s chief hydrographer; Tim Wiley, environmental engagement officer, Office of the Coordinator for Cuban Affairs, U.S. Department of State; Captain Richard Brennan, chief of Coast Survey Development Laboratory; Sladjana Maksimovic, Coast Survey cartographer; Edenia Machin Gonzalez, scientist, Cuba’s National Cartographic Agency; Ramon Padron Diaz, frigate captain and chief of Hydrographic Department, Cuba’s National Office of Hydrography; Colonel Candido Regalado Gomez, chief of Cuba’s National Office of Hydrography and Geodesy; and Victor E. Aluija Urgell, lieutenant/general director, GEOCUBA Marine Studies.

By examining adjacent and adjoining ENCs, both sides were able to confer on ways to improve chart coverage in the busy Straits of Florida, where chart misalignments can play havoc with navigational systems as a vessel moves across maritime borders. Countries around the world regularly resolve these issues, as the U.S. does with Canada and Mexico, through regional consultations hosted by the International Hydrographic Organization but, until now, the U.S. and Cuba were unable to work together on their common set of challenges.

Coast Survey initiated the charting discussions earlier this year, when a team of cartographic professionals traveled to Havana in February for three days of meetings with Cuban officials from the Office of National Hydrography and Geodesy and GEOCUBA. During the visit, the Americans and Cubans agreed to work together on a new international paper chart, INT Chart 4149, which will cover south Florida, the Bahamas, and north Cuba. The Office of Coast Survey is now creating the chart, using data supplied by the United Kingdom Hydrographic Office and the Cubans in addition to U.S. data, and plans to publish the new chart in 2016.

This week’s charting progress follows closely on another major accomplishment. Last month, NOAA Administrator Dr. Kathryn Sullivan and Dr. Holly Bamford, acting assistant secretary of conservation and management, traveled to Havana to sign a Memorandum of Understanding on Marine Protected Area cooperation between our two countries. The agreement provides an opportunity for the U.S and Cuba to develop science, education, and management programs between sister sites in both countries, and will strengthen our collaborative relationship.

“The Cuban maritime industry, like many U.S. ports, is building new infrastructure to support commerce and tourism,” said Rear Admiral Gerd Glang, director of Coast Survey. “Like us, they are improving their charts as port and coastal uses evolve, to support expanding maritime commerce.”

“We are now able to work together, as we do with other nations, to coordinate chart coverage and data acquisition.”

Katie Ries with Cuban delegation

In addition to hours of indoor meetings, the Cuban delegation was able to spend some time discussing data acquisition onboard Coast Survey’s research vessel, Bay Hydro II, homeported in Solomons, Maryland. Kathryn Ries (in blue jacket), deputy director of Coast Survey, hosted Ramon Padron Diaz, frigate captain and chief of the Hydrographic Department, Cuba’s National Office of Hydrography; Victor E. Aluija Urgell, lieutenant/general director, GEOCUBA Marine Studies; Edenia Machin Gonzalez, scientist, National Cartographic Agency – Cuba; Yanet Stable Cardenas, first secretary, Embassy of the Republic of Cuba; and Colonel Candido Regalado Gomez, chief of Cuba’s National Office of Hydrography and Geodesy.

 

Celebrating Abe’s birthday! Lincoln’s slave density map is home again in President Lincoln Cottage   2 comments

The “slave density map,” created by the men of U.S. Coast Survey in 1861, is one of Coast Survey’s most treasured historical maps. Artist Francis Bicknell Carpenter included it in his painting, “First Reading of the Emancipation Proclamation of President Lincoln,” because Lincoln consulted it so often in devising his military strategy. According to Carpenter, President Lincoln used the map in his decisions to send his armies to free blacks in some of the highest density areas in order to destabilize Southern order.

Francis Bicknell Carpenter placed the "slave density map" in the lower right corner of his painting of the Emancipation Proclamation.

Francis Bicknell Carpenter placed the “slave density map” in the lower right corner of his painting of the Emancipation Proclamation.

 

President Lincoln’s Cottage, now maintained by the National Trust for Historic Preservation, is where President Lincoln developed the Emancipation Proclamation. So it was fitting that, on Lincoln’s birthday this year, NOAA’s Office of Coast Survey presented a copy of the map to Cottage officials, to assist with their vital educational programs.

In the very library where Lincoln may have studied the map, Coast Survey’s Dawn Forsythe (left) and NOAA’s Ben Sherman (right) presented the map to Erin Carlson Mast, the Cottage’s executive director, and Callie Hawkins, associate director for programs.

Forsythe Mast Hawkins Sherman

Dawn Forsythe (Coast Survey), Erin Carlson Mast and Callie Hawkins (Lincoln’s Cottage), and Ben Sherman (NOAA) with the slave density map in the Lincoln Cottage library.

 

The Cottage plans to use the map in their educational programs. To learn more about the map, see Mapping Slavery in the Nineteenth Century.

The men of Coast Survey created the map to help the public understand the secession crisis, by providing a visual link between secession and slavery.

The men of Coast Survey created the map to help the public understand the secession crisis, by providing a visual link between secession and slavery.

So you want to chart an artificial reef?   2 comments

There are literally millions of pieces of data on nautical charts. How do cartographers determine which data to put on the charts? Two Coast Survey cartographers, Paul Gionis and Lance Roddy, explained some of the processes, protocols, and NOAA charting requirements to participants at the Florida Artificial Reef Summit earlier this month. (See the archived video of their presentation, starting at 55:40.) Among their many duties, these cartographers are responsible for vetting artificial reef public notices and permits from the U.S. Army Corps of Engineers, and for acquiring source data from the state and county reef coordinators.

By explaining the nautical chart aspects of planning, creating, and maintaining fish havens, they hoped to smooth out the permitting and charting phases.

(By the way, in case you’re wondering what we mean by “fish haven,” Coast Survey’s Nautical Chart Manual defines them as “artificial shelters constructed of rocks, rubble, boxcars, boats, concrete, special designed precast structures to enhance fish habitats, remnants of oil well structures, etc., that are placed on the sea floor to attract fish. Fish havens are often located near fishing ports or major coastal inlets and are usually considered hazards to shipping. Constructed of rigid material and projecting above the bottom, they can impede surface navigation and therefore represent an important feature for charting.”)

Permits issued by the Army Corps of Engineers are the sole source for classifying obstructions as artificial reefs and fish havens for charting purposes. Specific essential information needs to be provided for charting the areas.

  • Cartographers need accurate geographic coordinates and dimensions, and the “authorized minimum clearance” (safe vessel clearance) for each distinct reef boundary.
  • Importantly, the designated area cannot conflict with charted features. For instance, we cannot designate artificial reefs or fish havens in safety fairways, restricted areas, anchorages, or entrance channels. It almost goes without saying that we also don’t want to place reefs in missile test areas, or areas with pipelines, cables, or unexploded ordnance.
  • The cartographers must receive notice of deployment (telling us that construction has begun).

A good example of how Coast Survey works on charting artificial reefs is the initial reef proposal for Port Everglades chart 11466. The initial proposal designated a minimum clearance of 7 feet – which would prevent a mariner from transiting the area even though the water is very deep. The proposed reef area also conflicted with two established anchorages for commercial ships waiting to enter the port.

Initial reef proposal

Initial reef proposal

 

After working with the Corps of Engineers and project planners, Coast Survey was able to split the area and chart three separate bands with progressively deeper minimum depths, from seven feet to 60 feet of clearance. They also avoided overlap with the charted anchorages. The solution prevented navigation conflicts and protected the artificial reef.

Charted fish havens were banded progressive depths, excluding anchorages

Charted fish havens were banded by progressive depths, and excluded anchorages.

The cartographers appreciated the chance to talk directly to Florida’s artificial reef community. “Events like these provide an expansive avenue to articulate Coast Survey requirements for promoting safe and efficient navigation,” Gionis points out.

Coast Survey’s navigation manager for Florida, Mike Henderson, is our charting representative on the ground in that state, and is available to work on future projects as well as answer charting inquiries in general.

Coast Survey improves access to data on thousands of wrecks and obstructions   6 comments

Knowing the locations of shipwrecks and other obstructions has always been important for safe navigation ‒ but mariners are not the only people who want to know about wrecks. They are also important for marine archeology, recreational diving, salvage operations, and fishing, among other interests. Now, Coast Survey has improved our Wrecks and Obstructions Database, giving everyone easy access to new records to explore.

Web-based map of wrecks

Coast Survey’s wrecks and obstructions database provides info on thousands of wrecks.

Historically, Coast Survey has maintained two separate sources of information on wrecks. We recently combined the sources, bringing together information on nearly 20,000 wrecks and obstructions.

AWOIS

Coast Survey established the Automated Wreck and Obstruction Information System (AWOIS) database in 1981 to help estimate the level of effort required to investigate items during a planned hydrographic survey, but maritime users were also interested in AWOIS’ historical records. However, because the emphasis is on features that are most likely to pose a hazard to navigation, AWOIS has always had limitations. Most notably, AWOIS is not a comprehensive record and does not completely address every known or reported wreck. Additionally, for a number of reasons, AWOIS positions do not always agree with a charted position for a similar feature.

NOAA ENC

Coast Survey compiles NOAA’s electronic navigational charts (NOAA ENC®) from sources on features that are navigationally significant. As the official chart data used in electronic chart and display information systems (ECDIS), ENCs are the authoritative source of information about known or reported wrecks and are much more comprehensive than AWOIS. However, the features in an ENC typically lack the historic information and context provided by AWOIS.

COMBINED DATA

Correcting for some overlap between the two source databases, Coast Survey’s new wrecks and obstructions database now contains information on about 13,000 wreck features and 6,000 obstructions. Wreck features from each original database are stored in separate layers but can be displayed together. Users may also choose a background map from several options.

The new database also offers users additional data formats from which to choose. Historically, shipwreck data in AWOIS was available in Adobe PDF and as Microsoft Access Database (MDB) format. More recently, KML/KMZ files replaced PDF and MDB formats, making it easier for public users to view AWOIS data, by using freely available software such as Google Maps or Google Earth. Now, in addition to KML/KMZ and Microsoft Excel formats for general users, Coast Survey provides the data in ArcGIS REST services and OGC WMS services, for use in GIS software programs or web-based map mashup sites.

%d bloggers like this: